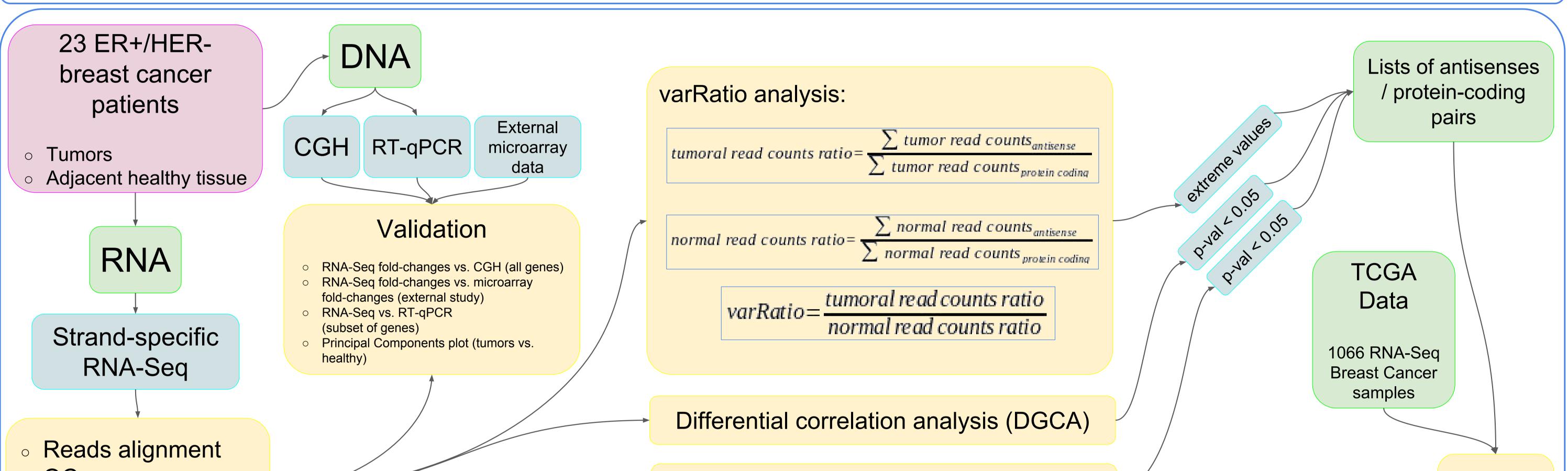


Antisense long non-coding RNAs in breast cancer: A transcriptome-wide disruption

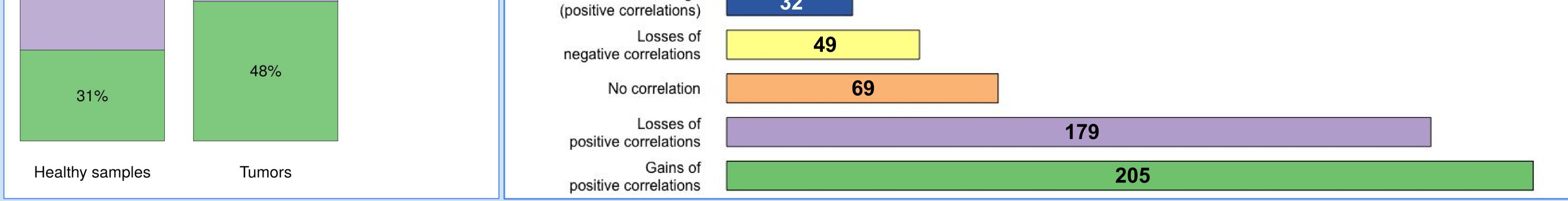
Stephane Wenric, Sonia El Guendi, Jean-Hubert Caberg, Warda Bezzaou, Corinne Fasquelle, Benoit Charloteaux, Latifa Karim, Benoit Hennuy, Pierre Frères, Joëlle Collignon, Meriem Boukerroucha, Hélène Schroeder, Fabrice Olivier, Véronique Jossa, Guy Jérusalem, Claire Josse, Vincent Bours

Why breast cancer?

- Most frequent cancer type in women
 - (~35% of female cancers)
- First cause of cancer death in women (~35% of cancer deaths)
- ¹/₈ women will have breast cancer during their lifetime



Why antisense IncRNAs?


- Long non-coding RNAs (IncRNAs) = non protein-coding transcripts longer than 200 nt
- Antisense IncRNA or natural antisense transcript (NAT) = IncRNA
 - Sharing the same genomic location as a protein-coding gene
 - Transcribed in the opposite direction
 - \circ Overlapping > 1 exon
- NATs
 - Regulate protein-coding gene expression Ο • Overlap more than 50% of sense RNA transcripts

- Breast cancer involves multiple genes
- Genetic alteration mechanisms are not always well known
- Some of these mechanisms involve antisense IncRNAs
- Have a lower expression than protein-coding genes
- Can have an effect in *cis* or in *trans*

Study design

 QC Gene quantification Normalization 		Differential expression analysis (DESeq2)	Survival analysis
RNA-Seq pipeline Validation of RNA-Seq data Validation of RNA-Seq data Test for enrichment in survival-associated genes			
 Global: observe the disruption of the antisense IncRNA landscape in breast cancer tumors, at the whole transcriptome scale Local: use analytical methods to highlight pairs of antisense IncRNAs and overlapping protein-coding genes involved in the breast cancer pathology 			
Results			
antisense IncRNAs in breast prote		2. Correlations between pairs of antisense IncRNAs and overlapping protein coding genes are disrupted in breast cancer tumors, with positive correlations more frequently affected (3.3 times) than negative ones.	
	 protein-coding antisenses 	Change from positive to negative correlation Change from negative to positive correlation Gains of negative correlations No change A 22	

3. Protein coding genes overlapping antisense lncRNAs highlighted by our selection methods are **1.3** times more likely than protein coding genes without antisense overlap to be associated with survival.

(survival analysis performed on 1066 TCGA breast cancer samples)

Conclusion

This is the first breast cancer-based, transcriptome-wide, strand-specific RNA-Seq study performed with paired tumor and adjacent tissue samples. Our results show that opposite strand transcription regulation might play a key role in the breast cancer disease, involving several different protein-coding genes and antisenses. Further functional molecular studies will be needed to explore the mechanisms and roles of specific antisenses.

Funding: French Community of Belgium, Belgian Funds for Scientific Research (F.R.S.-FNRS), F.R.S.-FNRS-Télévie, CHU Liège (F.I.R.S.), Wallonia (XSPRELTRIN), CÉCI (F.R.S.-FNRS Grant 2.5020.11)

https://www.biorxiv.org/content/early/2017/08/14/176164