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Abstract

Summary: Finding informative predictive features in high dimensional biological case-control datasets is

challenging. The Extreme Pseudo-Sampling (EPS) algorithm offers a solution to the challenge of feature

selection via a combination of deep learning and linear regression models. First, using a variational

autoencoder, it generates complex latent representations for the samples. Second, it classifies the

latent representations of cases and controls via logistic regression. Third, it generates new samples

(pseudo-samples) around the extreme cases and controls in the regression model. Finally, it trains a

new regression model over the upsampled space. The most significant variables in this regression are

selected. We present an open-source implementation of the algorithm that is easy to set up, use, and

customize. Our package enhances the original algorithm by providing new features and customizability

for data preparation, model training and classification functionalities. We believe the new features will

enable the adoption of the algorithm for a diverse range of datasets.

Availability: The software package for Python is available online at https://github.com/roohy/eps

Contact: rshemira@usc.edu

1 Introduction

New biological data collection technologies that yield large numbers of

bio-markers in new case-control datasets have made the task of feature

selection ever more important and challenging. The two main advantages

of feature selection (Hemphill et al., 2014) are (1) bias reduction in very

high dimensional datasets, such as the UK Biobank (Sudlow et al., 2015)

which contains hundreds of thousands of features, and (2) addressing

the curse of dimensionality due to an imbalance between the number

of samples and the number of markers, as in datasets like the TCGA

(Weinstein et al., 2013) RNA dataset, and ctcRbase (Zhao et al., 2020),

which have tens of thousands of markers and only a few thousands of

samples. Dimensionality reduction methods, such as PCA, tSNE, and

recently, autoencoders are a class of feature selection algorithms that

address these issues by creating alternate representations of the data

(Hemphill et al., 2014; Tan et al., 2014).

The latent features in autoencoders are derived from complex

associations between the original features which increase classification

power in bioinformatics applications (Tan et al., 2014). However,

extracting the effects of the original feature set on the latent representation

of data is challenging due to the non-linearity of such models (Danaee

et al., 2017). This disadvantage is especially pronounced in biological

applications as classification alone is seldom the sole purpose of the

analysis; understanding the causes behind the classification results is often

as crucial as the classification itself. The Extreme Pseudo-Sampling (EPS)

algorithm, first introduced in Wenric and Shemirani (2018), proposed a

solution to address this disadvantage by generating pseudo-samples that

highlight the features in the original dataset that are the most influential

in case-control prediction. The EPS algorithm was used to extract a gene

ranking for cancer survival analysis; and was able to outperform traditional

linear methods in 9 out of 12 datasets obtained from the TCGA RNA

expression dataset without using the survival data as input.

EPS uses a Variational AutoEncoder (VAE) technique to extract a

latent representation of the data. Every sample xi is assigned a probability

distribution P (z|x) with estimated mean ẑi. Unlike encoding, decoding

(reconstructing) x̂i from ẑi is deterministic. Further, the VAE model

ensures that all zi are located in close proximity. These features ensure

that decoding points around each ẑi would result in new distinct pseudo-

samples in the original feature set that have similar features to xi while

following the statistical properties of all samples in the dataset.

Despite its potential, both implementation and customization of the

EPS algorithm requires proficiency in deep learning programming and

theory. Here, we present an open-source python package to streamline the

use of EPS. We have automated non-trivial steps of the algorithm along

with the required data management methods into single function calls in
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the pipeline. Not only does it offer a ranking of all features, it also enables

the usage of its hidden predictive model for classification purposes. Below,

we first briefly describe the EPS algorithm and then describe the features

of our enhanced EPS package.

2 EPS Algorithm

The main steps of the EPS algorithm are shown in Supplementary Figure

1. First, a multi-layered Variational AutoEncoder (VAE; Kingma and

Welling (2013)) is trained using the train function. This VAE uses fully

connected layers to cover associations between any possible set of features.

When trained, the VAE offers a compressed representation of the samples

in a latent space, where cases and controls can be separated by a hyper

plane (Wenric and Shemirani, 2018). In the second step of the pipeline, the

generate function fits a logistic regressor on the latent representations

of the samples based on the case-control labels to find the best separating

hyperplane. On each side of the regressor hyper plane, a user-defined

number of samples with the highest distance from the hyper plane are

selected as seeds for randomized generation of pseudo-samples not present

in the original dataset. The pseudo-samples have the same labels as their

seeds. The pseudo-samples are generated using a multivariate normal

distribution with a seed as the mean. Third, representations of the pseudo-

samples in the original feature space are generated using the decoder of the

VAE trained in the first step. Unlike the original samples, the new pseudo-

samples can easily be classified by a logistic regression model. Informative

predictive features in the original feature space are made salient by the

pseudo-sample-enriched regression. EPS provides a ranking of the features

based on their fitted weights of this new logistic regressor.

3 EPS Software Features

We describe select capabilities of the EPS package below:

• The EPS package uses the Tensorflow1 library to build the VAE.

Thus, through the configuration of the Tensorflow software on the

host machine, it can also be run on graphical processing units (GPUs)

for higher efficiency.

• The EPS package accepts input data in a Numpy array format. This

format is supported by most python data packages, which makes the

process convenient.

• The input should be standardized so that their range is between zero

and one. Thus, the EPS package normalizes the data by default, unless

it is instructed otherwise.

• The Tensorflow graph is automatically reset when switching between

models to avoid model errors in the Tensorflow library. To reduce

the memory load caused by this switching process, EPS also clears the

memory when switching between models using the garbage collection

mechanism.

• The VAE uses the RMSProp optimization algorithm while the logistic

regression models use Adam optimizer (Kingma and Ba, 2014). The

learning rate for these optimizers can be set separately to increase

statistical power through parameter optimization.

• The VAE architecture in our software can be modified both in terms

of number of layers of the network, and number of nodes in each layer

using the set_layers function. Further, users can also select the

activation function for middle layers from all the activation functions

available in the Tensorflow library.

• The batch sizes and the number of epochs for training can be set

separately for every training function (VAE, latent regression, main

1 https://github.com/tensorflow/tensorflow

regression). The EPS automatically randomizes the dataset between

epochs.

• The number of selected seeds and extreme pseudo-samples generated

for each of them can be passed to the pipeline as arguments. The

variance of the pseudo-sampling process can be adjusted to control

the divergence of the pseudo-samples from the seed data.

• The pseudo-sample dataset is balanced (equal number of generated

cases and controls) to improve the regression performance and

overcome the imbalance observed in some case-control studies, such

as the TCGA gene expression dataset.

• The linear regressor in the latent space can also be used for

classification purposes, although it is not recommended for high

dimensional data (number of features > 20, 000) on personal

computing devices due to memory limitations.

• Pseudo-samples are now accessible to the users upon generation,

facilitating the augmentation of other feature selection algorithms via

pseudo-sampling.

• When using the generate function to generate the pseudo-samples

using the regressor, the EPS can use a subset of VAE training data and

labels for the process. This enables the usage of multiple case-control

datasets to train the VAE, both to reduce the VAE bias and to enable

the analysis of small datasets. Assigning differentiating labels to each

dataset is not required.

4 Conclusion

The EPS package provides a feature selection process that takes complex

data associations into account, while abstracting away the non-trivial

technical challenges of deep learning libraries and model and data

management in machine learning. We hope this enables new applications

for this algorithms. We plan to add more customization options in the

future. The new features, such the ability to choose the random distribution

for the pseudo-samples, will further increase the adaptability of the

software.
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