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SUMMARY
Understanding population health disparities is an essential component of equitable precision health efforts.
Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not
adequately capture disease burdens and environmental factors impacting specific sub-populations. Here,
we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic
data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in
New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health out-
comes that were statistically associatedwith a specific group and demonstrated significant differences in the
segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale
population structure can impact the prediction of complex disease risk within groups. This work reinforces
the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of popu-
lation health.
INTRODUCTION

Populations around the world often have differential rates of

disease due to a combination of genetic variation and environ-

mental factors. Understanding the differences in disease

burdens according to demographic factors is the basis of epide-

miological research and is fundamentally important to clinical

care and public health. Most studies of human disease begin

by sampling from predefined populations, which are usually

identified on the basis of race, ethnicity, cultural identity, or ge-

ography. However, these population categories are often too

coarse to capture all of the environmental and demographic

ties that can impact disease burdens. In the United States, indi-

viduals with roots from Latin America are often broadly classified
2068 Cell 184, 2068–2083, April 15, 2021 ª 2021 Elsevier Inc.
as Hispanic and/or Latinx, but sub-groups with origins from

different countries in the Americas may have different rates of

disease. For example, populations of Puerto Rican (PR) descent

have one of the highest asthma rates in the world, while popula-

tions of Mexican descent have one of the lowest (Carter-Pokras

and Gergen, 1993; Homa et al., 2000).

With the advent of large-scale population-based DNA bio-

banks in health systems, new opportunities are available to char-

acterize the links between demography and a broad range of

health outcomes (Collins, 2012; Dewey et al., 2016; Belbin

et al., 2017; Amendola et al., 2018; Abul-Husn and Kenny,

2019). Knowledge about genetic variation shared across human

populations can aid in understanding the demographic events

that might impact disease burden across populations. For
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example, variants in the APOL1 gene, which confer a substan-

tially increased risk of kidney disease and cardiovascular dis-

ease, arose in Africa; were first discovered in African American

(AA) populations (Kao et al., 2008; Parsa et al., 2013); and are

mainly studied in African (Hassan et al., 2020; Ekrikpo et al.,

2020; Thakoordeen-Reddy et al., 2020; Nqebelele et al., 2019)

or AA (Miller et al., 2020; Umeukeje and Young, 2019; Gutiérrez

et al., 2020) populations. However, APOL1 risk variants exist at

appreciable frequencies among many populations across the

Americas that historically share African genetic ancestry, but

may not self-identify as African or AA, and are subsequently un-

derrepresented in APOL1 research (Nadkarni et al., 2018;

Kramer et al., 2017). This suggests that while self-reported

race/ethnicity (R/E) information can be useful in assessing epide-

miological risk, in some cases it may be limiting. Furthermore,

this information may be inaccurately captured or missing in

health systems and may not accurately recapitulate the inherent

population structure actually impacting disease risk (Smith et al.,

2010; Klinger et al., 2015).

High-density genome-scale data have long been used to

examine genetic differences between populations that, in turn,

can be used to infer population genetic history. Popular tech-

niques are algorithmic-based methods such as principal-

component analysis (PCA) (Price et al., 2006; Menozzi et al.,

1978; Patterson et al., 2006) and model-based methods such

as ADMIXTURE (Pritchard et al., 2000; Tang et al., 2005; Alex-

ander et al., 2009), which estimate genetic ancestry by assessing

genomic variants in aggregate. Other powerful approaches infer

more fine-scale genetic ancestry by using local haplotypes along

chromosomal segments (Gusev et al., 2009; Lawson et al., 2012;

Maples et al., 2013). One such approach identifies residual sig-

natures of distant genetic relationships that may be detected

by inferring long-range haplotypes (Browning and Browning,

2012). Although genetic traces of our distant ancestors will

decay rapidly over time, long haplotypes that have been co-in-

herited identical by descent (IBD) from some of our more recent

ancestors may persist. At a population level, these can be

analyzed in aggregate to infer distant relationships to a set of

shared ancestors. We expect that individuals in a population

who are distantly related to one another may also be more likely

to share recent population history. This, in turn, may be linked to

sharing of culture, environment, and correlations in disease risk.

In this study, we examined fine-scale population structure in

BioMe, a highly diverse multi-ethnic biobank ascertained through

the Mount Sinai Health System in New York City (NYC). When

comparing EHR-recorded and self-reported R/E, we observed

varying rates of discordance, demonstrating that R/E information

can be inconsistently captured in EHRs, particularly for Hispanic/

Latinx and Asian populations. Exploring genetic ancestry within

BioMe revealed further complexity, with distinct patterns of con-

tinental and subcontinental genetic substructure within self-re-

ported R/E groups. To investigate this substructure further, we

analyzed IBD sharing in BioMe and applied an unsupervised,

scale-free network modeling method to uncover clusters of pop-

ulations informed by patterns of recent demography. We re-

vealed 17 distinct communities highly correlated with recent

migratory patterns to NYC and demonstrated that some of these

communities harbor signatures of founder events, the timings of
which coincided with the era of colonization of the Americas.

We linked these communities to more than 1,700 health

outcomes and found distinctive health patterns of disease risk,

uncovering more than 1,100 examples of statistically significant

differences in health outcomes between populations, some of

which point to unknown or underappreciated population-specific

disease risks. We then demonstrate elevated prevalence of

founder variants for genetic disorders in two IBD founder commu-

nities relative to self-reporting R/E labels and country-of-origin

information, suggesting that IBD communities allow for refined

inference of prevalence of pathogenic variants in at-risk popula-

tions. Finally, we demonstrate significant differences in the

distributions and predictive power of polygenic risk scores

(PRSs) between two European ancestry IBD communities, indi-

cating that fine-scale population structure also impacts our

understanding of the genetics of complex traits. This work dem-

onstrates the value of the application of genetic ancestry in med-

icine and how understanding fine-scale population structure

could improve population health monitoring.

RESULTS

Evaluating the relationship between R/E, genetic
ancestry, and geographical origin in the large Mount
Sinai Health System in NYC
We evaluated R/E in a large (N = 36,061), diverse biobank

(BioMe) linked to EHRs in the Mount Sinai Health System in

NYC. To understand how R/E information is captured in a large,

urban health system, we compared the self-reported R/E sur-

veyed during the BioMe enrollment (self-reported R/E; Table

S1) to R/E recorded in the Mount Sinai EHRs. We first restricted

analysis to participants who reported only one of the following R/

Es in the enrollment survey for one of five population groups: Eu-

ropean American (EA; N = 9,830; see Star Methods), AA (N =

7,976), Hispanic/Latino (HL; N = 11,544), East and Southeast

Asian (ESA; N = 965), and Native American (NA; N = 61) (total:

84.2% of BioMe; N = 30,376 participants and n = 1,310,279 total

visits). We mapped self-reported R/E for these individuals to R/E

information extracted from the EHR at each independent visit.

Self-reported and EHR-recorded R/E was concordant in

64.5% of total visits, or 71.6% of visits if excluding visits where

R/E was designated as ‘‘unknown’’ (resulting in the exclusion

of n = 129,678 healthcare visits), and we observed significant dif-

ferences in concordance between population groups (Figure 1A).

The remaining 15.8% of BioMe participants self-reported a

different R/E that did not directly correspond to an EHR-

recorded R/E variable, precluding us from making a direct com-

parison between the two (Figure S1A). Overall, these analyses

support that R/E data are often poorly and inconsistently

captured, particularly for non-EA populations, during hospital

visits (Banda et al., 2015; Klinger et al., 2015).

To explore the relationship between self-reported R/E and ge-

netic ancestry, we estimated global genetic ancestry proportions

for a subset of BioMe participants (N = 31,705) genotyped on the

Global Screening Array (GSA). We first examined the correlation

between self-reported R/E and self-reported region of origin,

revealing a complex relationship between R/E and subcontinen-

tal region (Figure 1B). We then merged BioMe participants with a
Cell 184, 2068–2083, April 15, 2021 2069
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reference panel of 87 populations representing ancestry from

seven continental or subcontinental regions. Using PCA, we

demonstrate that BioMe participants represent a continuum of

genetic diversity, even within self-reported R/E groups (Fig-

ure 1C). BioMe participants fall between African and non-African

reference panels on principal component 1 (PC 1) and between

European, Asian, American, and Oceanian reference panels on

PC 2 (Figure 1D). The first 10 PCs can also be represented as

a low-dimensional topological map using the uniform manifold

approximation and projection (UMAP) algorithm, presenting

many clusters that are roughly grouped by continent and others

with little or no overlap with reference panels, presenting a chal-

lenge for their interpretation (Figure S1B).

We also explored population demography using ADMIX-

TURE, a model-based approach that applies a pre-set number

of putative ancestral populations to seek the best fit of ancestral

clusters in the data (Figure S1C). Analysis, including reference

panels from Thousand Genomes Project (TGP; N = 2,504), the

Human Genome Diversity Panel (HGDP; N = 986), and the Pop-

ulation Architecture using Genomics and Epidemiology (PAGE)

study (N = 700), that was fit to five ancestral populations (k = 5)

recapitulates five continental-level ancestral components cor-

responding to African, European, East Asian, South Asian, and

Amerindigenous ancestry. As expected, self-reported AA and

HL participants exhibited varying degrees of ancestry from Eu-

rope, Africa, and the Americas; however, several individuals

also appear to have appreciable (>10%) levels of South Asian

(2.2% of individuals) or East Asian (0.6% of individuals) ancestry

(Figure 1E). Participants who self-identify as ‘‘other’’ exhibit

varying proportions of admixture from all 5 different continent

groups. At k = 12, we observe an appreciable Oceanian compo-

nent (6.3%; Figure 1F, orange) in participants who self-identify

as East Asian, two distinct Amerindigenous components (Fig-

ure 1F, light and dark green) present in both self-reported NA

and HL participants. By linking BioMe participants born to

self-reported country of birth, we were able to explore diversity

linked to more recent demography (Figure 1G). We demonstrate

European, African, and Amerindigenous ancestry proportions
Figure 1. Evaluating the relationship between race/ethnicity, genetic

System in New York City (NYC)

(A) Plot of the percentage concordance between EHR-recorded and self-reporte

BioMe survey and EHRR/E variables. The x axis represents the percentage of inte

between EHR and self-reporting, while the y axis represents the percentage of in

around the lines represent the 95% confidence intervals.

(B) Heatmap representing the correlation between self-reported R/E and subcontin

array for whom both self-reported R/E and country-of-birth information were ava

(C) Principal-component analysis (PCA) for N = 31,705 genotyped BioMe particip

(D) Unsupervised PCA plot of BioMe participants (gray) with the addition of refere

Middle East (dark red), Europe (light red), South Asia (yellow), East Asia (purple

patterns of admixture and continental genetic ancestry among BioMe participan

(E) Themean ADMIXTURE components for BioMe participants at k= 5 stratified by

k = 5 corresponds to African (blue), European (red), South Asian (yellow), East Asia

per column represent the mean ancestry proportions of each of these five comp

(F) The mean admixture components for BioMe participants at k = 12 stratified b

genetic ancestry among groups.

(G) The mean admixture components at k = 5 for BioMe participants grouped by s

are displayed).

(H) The mean admixture components at k = 12 for BioMe participants based on
consistent with previous reports in participants born in Puerto

Rico (59.3, 26.0, and 14.2%, respectively), Dominican Republic

(50.3, 40.9, and 7.4%), Jamaica (13.0, 83.2, and 0.6%), and

Cuba (66.4, 26.8, and 4.6%) (Moreno-Estrada et al., 2013). We

observe appreciable levels of East and South Asian ancestry

in participants born in Trinidad and Tobago (4.7 and 24.5%),

the Bahamas (10.3 and 7.7%), and Guyana (6.1 and 50.6%),

which is consistent with historical accounts of South Asian

migration to the Caribbean. At k = 12 (Figure 1H). We also

observe complex structure in the European component

including the resolution of a component most predominant in

participants who self-report as Jewish (83.9 versus 4.3% in par-

ticipants who self-reported as ‘‘white/Caucasian’’ only) in a sub-

set of the US-born participants, as well as participants born in

North African and the Middle East. Furthermore, we observe

two distinct European components that likely represent a north-

ern-southern European cline in genetic ancestry across Europe

(Novembre et al., 2008) and a distinct European component that

appears predominantly in admixed populations from the Amer-

icas. This component is particularly notable in Caribbean-born

participants and is present to a lesser extent in Portuguese-

and Spanish-born BioMe participants. Taken together, this in-

formation reveals BioMe to be a rich source of ancestral genetic

diversity, including many populations that are otherwise poorly

represented in biomedical genomics research.

Detecting communities of recent shared ancestry
in NYC
To further investigate the complex genetic ancestry in BioMe, we

explored patterns of distant relatedness reflecting fine-scale

structure. We first detected pairwise genomic tracts inherited

IBD (pairwise haplotypic tracts of 3 cM or longer) between all

participants and 2,504 participants comprising 26 global popula-

tions of the 1000 Genomes Project phase 3 (Abecasis et al.,

2012). We used this information to construct a network of pair-

wise IBD sharing between all individuals who were not inferred

to be directly related (see STAR Methods; Figure S2A). To iden-

tify ‘‘communities’’ of individuals enriched for recent, shared
ancestry, and geographical origin in the large Mount Sinai Health

d R/E for 5 categories for which there was a one-to-one mapping between the

ractions a given individual has with the healthcare system that were concordant

dividuals within a self-reported R/E category that meet that threshold. Ribbons

ental region of birth for the subset of BioMe participants genotyped on theGSA

ilable.

ants colored by self-reported R/E.

nce panels from 7 continental/subcontinental regions, namely Africa (blue), the

), the Americas (green), and Oceania (orange), revealing complex and varied

ts.

self-reported R/E. Each color represents an inferred ancestry proportion that at

n (purple), and Amerindigenous (green) ancestry. The proportions of each color

onents within each self-reported R/E group.

y self-reported R/E. At k = 12, ADMIXTURE returns patterns of subcontinental

elf-reported country of birth (only countries represented by NR 10 participants

self-reported country of birth.
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Figure 2. Detecting communities of recent shared ancestry in NYC

(A) Network of IBD sharing among BioMe participants, colored by community membership as inferred by InfoMap (for the top 17 communities only and only

showing nodes with >30 connections to other nodes). Returned communities reflect an enrichment of IBD sharing among individuals of recent, shared genetic

ancestry and thus recapitulate fine-scale population substructure.

(B) Schematic representation of the 17 distinct IBD communities recovered by InfoMap.

(C) Heatmap representing the population-level fraction of IBD sharing within and between inferred IBD communities reveals a high degree of modularity.
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genetic ancestry, we performed community detection via

flow-based clustering using the InfoMap algorithm (Rosvall and

Bergstrom, 2008, 2011) (Figures 2A and 2B).

We observed that 96%of BioMe participants fall into one of 17

distinct clusters containing at least 100 individuals that we refer
2072 Cell 184, 2068–2083, April 15, 2021
to as IBD communities. Analysis of the inter- and intra-popula-

tion-level sharing of these communities revealed a higher prob-

ability of pairwise IBD sharing within communities compared

with between communities (Figure 2C). Additionally, in instances

where IBD sharing does occur, the pairwise sumof IBD sharing is
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also higher within than between communities (Figure S2B). We

examined the topology of the IBD network and determined com-

munity assignments to be non-random through a node-level

comparison of similar edges between 10 instances of a network

based on pairwise IBD sharing and 100 instances of topologi-

cally similar random networks created with the Erd}os-Rényi

(ER) model (Durrett, 2006). The quantile of the Jaccard similarity

coefficient obtained by comparing these networks corresponds

to a permutation p value. Therefore, the communities detected

by using the InfoMap algorithm are non-random and statistically

significant (p < 3.25 3 10�4).

We hypothesized that these communities represent geograph-

ical or ethnic substructure within the BioMe population. To test

this, we compared IBD community membership to survey-

derived population level information for BioMe participants and

calculated the positive predictive values (PPVs) for each popula-

tion label (‘‘ground truth’’) versus each identified community (pre-

dictor) (Figures S2C and S2D). Many communities had high PPVs

(>0.9) with a single country of origin (6/17), including Puerto Rico,

the Dominican Republic, Colombia, Ecuador, Mexico, and

Ethiopia, likely reflecting recent migrations to NYC. However, a

number did not, including one community that notably consisted

of 85% of individuals in BioMe who self-reported having Jewish

ancestry in the survey (Figure S2E). Other IBD communities

were also detected that transcended self-reported R/E labels

and mapped across various different groups. For example, one

community that, based on a combination of self-reported coun-

try-of-origin information and PCA analysis, is likely to represent

Garifuna (a population of admixed African and Amerindigenous

ancestry with recent ties to Central America and St. Vincent

and the Grenadines). Individuals in this community (N = 113)

were either born in Europe, Central America, or in the United

States and self-identified as AA, HL, or other, but cluster together

tightly in PC space (Figure S2F).

We next determined whether IBD community detection was

better able to classify individuals based on recent genetic

ancestry than current best practices, i.e., k-means clustering

over PCA eigenvectors. We performed k-means clustering

from k = 5 to k = 20 over the first 5 PCs calculated across all

BioMe participants. To measure accuracy, we calculated PPV,

negative predictive value (NPV), sensitivity, and specificity for

each inferred cluster using country-of-origin labels. We

compared k-means clustering to IBD communities with a PPV

> 0.9 for country-of-origin population labels: the PR, Dominican,

Ecuadorian, Colombian, Mexican, and Ethiopian communities.

For each of the six communities, we observed that PPV, NPV,

and specificity were always the same or higher in IBD commu-

nities comparedwith k-means clusteringwith any value of k (Fig-

ure S3). We noted that while sensitivity can also be higher for

IBD communities, in some cases it was lower than k-means

clustering at low k values for Colombian, Mexican, and Ethio-

pian groups. We speculate that this may reflect population sub-

structure within a country of origin or subsequent patterns of

migration to NYC. Nevertheless, the IBD-based approach was

the most accurate genetic ancestry method for detecting fine-

scale population structure and was selected for the down-

stream analysis of genetic ancestry in medicine using health

record data.
Signatures of founder effects in BioMe communities
Patterns in the distribution and abundance of population-level

IBD sharing are influenced by demographic events such

as migration, founder effects, and population bottlenecking

(Browning and Browning, 2012; Thompson, 2013). We observed

evidence of founder effects in the form of elevated IBD sharing in

multiple IBD communities (Figure 3A). These included the Ashke-

nazi Jewish (AJ) community (sample size N = 4,415; median pair-

wise sum of IBD sharing = 21.79 cM [95% confidence interval

(CI) = 21.77–21.80], sum of runs of homozygosity [ROH] =

11.62 MB [95% CI = 11.08–12.02]) and the Finnish community

(N = 120, IBD = 10.61 cM [95% CI = 10.34–10.91], ROH = 9.04

MB [95% CI = 7.32–12.74]), both of which are known and well-

studied founder populations. Five other communities exhibited

high levels of IBD sharing (IBD > 8 cM) and enrichment for auto-

zygosity (ROH > 5 MB), namely PR (N = 5,452), Dominican (N =

1,971), Garifuna (N = 113), Colombian (N = 234), and Ecuadorian

(N = 438) communities. By contrast, communities similar to well-

studied, non-founder populations such as non-Jewish EA ex-

hibited lower levels of IBD sharing (IBD < 5 cM) and autozygosity

(ROH < 5 MB; Table S2). Examining the network topology, IBD

communities corresponding to founder populations exhibit spe-

cific characteristics: they have a high clustering coefficient (e.g.,

C = 0.92 for AJ;C = 0.97 for Garifuna;C = 0.85 for PR), while non-

founder populations have much lower values (e.g., C = 0.05 for

AA; C = 0.09 for non-Jewish EA), and they exhibit a strongly

bimodal degree distribution, with a high distance between the

intra-community degree distribution and the inter-community

distribution as summarized by the Wasserstein metric (e.g.,

W = 0.82 for AJ; W = 0.96 for Garifuna; W = 0.78 for PR), while

non-founder populations have much lower values (e.g., W =

0.03 for AA;W = 0.03 for non-Jewish Europeans) (Figure 3B; Fig-

ure S4A; Table S3).

To understand the timing of the bottlenecks leading to the

observed founder effects, we used the IBDNe software (Browning

and Browning, 2015) to model each community’s effective pop-

ulation size (Ne) over antecedent generations. For the commu-

nities representing populations from the Americas, the results

are consistent with a population bottleneck occurring approxi-

mately 10–15 generations ago, which is coincident with historical

accounts of the timings of European contact and subsequent

colonization (Figure 3C; Figure S4B). The most profound bottle-

neck was observed in the Garifuna community, with a minimum

Ne of 321 individuals (95% CI = 286–372, 10 generations ago),

consistent with a previous report (Mathias et al., 2016). This anal-

ysis demonstrates that founder effects are potentially more ubiq-

uitous than previously thought, with >25% of BioMe participants

falling within a community exhibiting founder effects, and this

was particularly notable among HL populations. This indicates

an under-recognized potential for reducing the genetically driven

health burden within HL communities, echoing similar work in

South Asian populations (Nakatsuka et al., 2017).

Characterizing the health phenome in communities of
distantly related individuals
To explore the effect of IBD community membership on predis-

position to EHR-captured health outcomes, we tested each

community for its relative enrichment of health-related traits.
Cell 184, 2068–2083, April 15, 2021 2073



Figure 3. Signatures of founder effects in BioMe communities

(A) (Top) Distribution of the mean sum of IBD sharing per inferred IBD community reveals the presence of elevated IBD sharing in several communities, including

canonical founder populations such as the Ashkenazi Jewish and Finnish, and also in several Hispanic/Latino populations including the Puerto Rican, Dominican,

and Garifuna. (Bottom) Distribution of the sum of runs of homozygosity (ROH) present within individuals per community. The violin and boxplots each represent

the minima, maxima, and interquartile ranges of each distribution.

(B) Analysis of the distribution of degree sharing within versus between communities exhibiting elevated IBD revealed high levels of modularity, further suggestive

of a founder effect.

(C) Using the tract-length distribution of IBD haplotypes to model the effective population size of communities over antecedent generations revealed evidence of

population bottlenecks between 10 and 15 generations ago. Ribbons around the lines represent the 95% confidence intervals.
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First, we extracted International Classification of Diseases 9

(ICD-9) (2007–2015) and ICD-10 (2015–present) billing codes

from the EHR. We then applied an aggregation schema to

convert ICD codes into 1,764 distinct diseases and traits called

phecodes (Wu et al., 2019).We systematically performed logistic

regression across all phecodes, where the membership of a
2074 Cell 184, 2068–2083, April 15, 2021
given community was used as the primary predictor variable, ad-

justing for age and sex as covariates, and restricting analyses to

communities containingR500BioMe participants (N = 7) in total.

In all, 1,177 of 4,988 phecode associations tested were either

significantly enriched or depleted across all seven of the top

communities after Bonferroni correction. Summary statistics
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for phecode associations per each of the largest seven commu-

nities are reported in Table S4.

We observed patterns of phecode enrichment across commu-

nities of shared continental ancestry. For example, three associ-

ations were significantly enriched in all three communities with

appreciable African genetic ancestry (>20%), namely the PR,

Dominican, and African diaspora communities (Table S4): essen-

tial hypertension, peripheral vascular disease, and type 2

diabetes (T2D). Higher prevalence of these diseases within AA

populations have been widely reported in the epidemiological

literature, but our findings and emerging evidence support these

diseases as also being prevalent in some HL communities (Alli-

son et al., 2015; Aguayo-Mazzucato et al., 2019; Campos and

Rodriguez, 2019). Of the significantly associated phecodes,

21.7% (n = 274) were uniquely enriched in a single community,

many of which had been previously reported to be at increased

prevalencewithin those communities. For example, the phecode

for asthma was observed to be most highly enriched in the PR

ancestry (Oh et al., 2016) community (Table S4) (odds ratio

[OR] = 2.91 [95% CI = 2.70–3.14]; p < 1.13 3 10�169). Further-

more, we observe elevated levels of ulcerative colitis (Bernstein

et al., 2006) (OR = 2.61 [95% CI = 1.99–3.42); p < 2.90 3 10�12)

and Parkinson’s disease (OR = 2.31 [95% CI = 1.78–3.00]; p <

4.31 3 10�10) in the AJ community (Figure 4A). We observe

significantly elevated rates of sickle cell anemia (Makani et al.,

2007) (OR = 6.92 [95% CI = 4.86–9.86]; p < 8.20 3 10�27) in

the African diaspora community. Within the non-Jewish EA (Ta-

ble S4) community, we observe elevated levels of multiple scle-

rosis (OR = 2.55 [95% CI = 2.01–3.237]; p < 1.33 3 10�14) and

basal cell carcinoma (OR = 3.24 [95% CI = 2.50–4.20]; p <

7.85 3 10�19). Finally, in the Filipino community, both viral hep-

atitis B (Wong et al., 2013) (OR = 6.60 [95% CI = 5.01–8.69];

p < 3.9 3 10�41) and gout (Prasad and Krishnan, 2014) (OR =

2.94 [95% CI = 1.99–4.35]; p < 6.553 10�8) were at significantly

higher prevalence (Table S4).

Among the community-specific phecodes, we also observe

an enrichment of phecodes, suggesting increased prevalence

of diseases within communities, that had not been previously

reported. We observed a cluster of significantly enriched cir-

culatory system (CS)-related phecodes, where 82% (9/11)

were significantly enriched in the Dominican community. For

example atherosclerosis of native arteries of the extremities

(OR = 4.06 [95% CI = 3.13–5.28]; p < 9.83 3 10�26) and cor-

onary atherosclerosis (OR = 1.64 [95% CI = 1.43–1.88]; p <

1.61 3 10�12) were the top two most significantly enriched co-

des (Table S4), suggestive of underlying increased prevalence

of peripheral artery disease (PAD) in this population. Likewise,

we observed a cluster of significantly enriched endocrine- and

metabolic-related phecodes, with 28% (9/32) significantly en-

riched in AJs, among which the top phecodes were chronic

lymphocytic thyroiditis (OR = 4.16 [95% CI = 3.62–4.78]; p <

2.31 3 10�89) and hypothyroidism (OR = 1.65 [95% CI =

1.49–1.83]; p < 3.00 3 10�21), suggesting an increased prev-

alence of autoimmune thyroid disease in this population.

Taken together, this analysis suggests that identification of

fine-scale genetic communities can help to elucidate the pres-

ence of population health disparities within healthcare

systems.
Improving estimates of prevalence of variants
underlying Mendelian conditions
To understand how fine-scale IBD-communities impact our un-

derstanding of the prevalence ofMendelian conditions,we gener-

ated a curated dataset of founder variants previously reported in

the literature. We focused on founder variants reported in AJ and

PR populations, as these were the two largest communities in

BioMe exhibiting evidence of founder effects. We initially identi-

fied a total of n = 82 AJ and n = 11 PR variants that were observed

in one or more individuals in the N = 27,727 unrelated (<2nd de-

gree) BioMe participants for whom exome sequence data were

available (Table S5). Via literature review, we were able to deter-

mine that for N = 32 of the AJ andN= 4 of the PR variants, founder

effect status was supported by haplotypic evidence. We

excluded four variants due to evidence of moderate-to-low pene-

trance, APC.c.3920T>A (Boursi et al., 2013; Liang et al., 2013),

CHEK2.c.1283C>T (Shaag et al., 2005), PSEN1.c.617G>C (Ar-

nold et al., 2013), and GBA.c.1226A>G (Zuckerman et al., 2007;

Balwani et al., 2010). Of the remaining variants, 28/30 had a path-

ogenic or pathogenic/likely pathogenic assertion in ClinVar,

meaning the assertions were supported by two or more submit-

ters with no conflicts. Two variants, CLRN1.c.144T>G and

ABCC8.c3989-9G>A, were listed with conflicting evidence of

pathogenicity in ClinVar; however, upon further inspection were

interpreted as pathogenic for the specific conditions under exam-

ination and therefore were included in downstream analysis. The

final dataset contained N = 27 AJ and N = 3 PR founder variants,

seven linked to two autosomal dominant (AD) disorders (heredi-

tary breast and ovarian cancer and Lynch syndrome) and 23

linked to 19 autosomal recessive (AR) disorders. There were

1,099 (3.96%) variant-positive BioMe participants (N = 986 that

carried one variant and N = 113 that carried two variants), for an

overall prevalence of 1 in 313 for AD and 1 in 27 for AR founder

variants (Boursi et al., 2013; Liang et al., 2013).

To evaluate the population specificity and accuracy of preva-

lence estimates of Mendelian founder variants in BioMe, we

examined the participant-reported answers to survey questions

compared with IBD community membership. We restricted anal-

ysis to the subset of N = 27,627 participants for whom we had

complete survey information for both self-reported R/E and

self-reported country of origin. For AJ founder variants, we

examined answers to the question ‘‘What ethnic groups are

part of your family background?’’ for variant-positive BioMe par-

ticipants (Table S6). Of the 946 participants who harbored an AJ

founder variant, 182 (19.2%) only self-reported as Jewish, 471

(49.8%) only as Caucasian/white, 168 (17.8%) as both, and

125 (13.2%) selected a different answer. By contrast, 919

(97.1%) were members of the AJ IBD community. We repeated

this analysis for the three PR founder variants. Of the 145 partic-

ipants who harbored a PR founder variant, 135 (93.1%) only self-

reported as HL, 0 (0%) only self-reported as Caucasian/white, 1

(0.7%) as both, and 9 (6.2%) selected a different answer. When

examining prevalences based on answers to the survey question

‘‘Where were you born?’’, we observed that 63 (43.4%) self-re-

ported being born in PR, 78 (53.8%) in the United States, and

4 (2.8%) selected a different answer. By contrast, 141 (97.2%)

were members of the PR IBD community. We then used IBD

communities to calculate per-variant prevalence, yielding rates
Cell 184, 2068–2083, April 15, 2021 2075



Figure 4. Exploring the impact of fine-scale IBD communities on complex disease

(A) Odds ratios (ORs) for the phecodes identified as being significantly higher or lower prevalence among the EHR of participants in the AJ IBD community (N =

4,409) colored by organ system. Lines represent the 95% confidence interval of the OR. Only phecodes for which the association met the Bonferroni threshold for

statistical significance are displayed. Annotations are provided for phecodes with the highest ORs.

(B) Z-score-normalized distributions for 5 phenotypic traits in the AJ and non-AJ EA fine-scale IBD communities. The yellow dashed line represents the mean of

the distribution prior to stratification based on community membership. Boxplots and violin plots represent the interquartile range, minima, and maxima of each

distribution.

(C) Prevalence of disease-specific case status, stratified by PRS decile for the AJ and non-Jewish EA IBD communities. Bars represent 95% confidence intervals.
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ranging from 1:108 to 1:4,102 for AD and from 1:23 to 1:820 for

AR variants (Table 1). This analysis demonstrates that by linking

disease variants to IBD communities and modeling the genetic

estimates of the specific founder events that give rise to disease

variants, we can improve our understanding of the population

specificity and accuracy of prevalence rates.
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Exploring the impact of fine-scale IBD communities and
complex disease
Next, we investigated the impact of fine-scale population struc-

ture, as captured by IBD communities, on complex disease. We

focused on PRSs, which predict complex disease risk by aggre-

gating the contributions of many variants associated with



Table 1. IBD communities refine estimates of prevalence of variants underlying Mendelian conditions

Gene

Mode of

inheritance

Physical position

(GRCh38) c.DNA position

Protein

modification

Self-reported

ethnic group

Self-reported

country of birth

IBD

community Condition

IBD community

prevelance

AJ founder variants (N = 27)

MSH2 AD 2: 47475171 c.1906G>C p.Ala636Pro C(1); O(1) US(2) AJ(2) Lynch syndrome 1 in 2,051

MSH6 AD 2: 47806630-

47806631

c.3984_

3987dupGTCA

p.Leu1330Valfs B(1) US(1) AJ(1) Lynch syndrome 1 in 4,102

MSH6 AD 2: 47806606-

47806609

c.3959_

3962delCAAG

p.Ala1190fs C(1) US(1) AJ(1) Lynch syndrome 1 in 4,102

BRCA1 AD 17: 43124028-

43124029

c.68_69delAG p.Glu23fs AJ(12); C(13); B(9); O(4) US(33); O(5) AJ(38) hereditary breast and

ovarian cancer

1 in 108

BRCA1 AD 17: 43057062-

43057063

c.5266dupC p.Gln1756Profs AJ(1); C(4); B(1) US(5); O(1) AJ(5); O(1) hereditary breast and

ovarian cancer

1 in 820

BRCA2 AD 13: 32340301 c.5946delT p.Ser1982fs AJ(4); C(17); B(8); O(5) US(31); O(3) AJ(34); O(1) hereditary breast and

ovarian cancer

1 in 124

F11 AR 4: 186274193 c.403G>T p.Glu135Ter AJ(15); C(66); B(26); O(20) US(111); O(16) AJ(123); O(4) factor XI deficiency 1 in 33

F11 AR 4: 186280258 c.901T>C p.Phe301Leu AJ(40); C(84); B(35); O(28) US(159); O(28) AJ(182); O(5) factor XI deficiency 1 in 23

MTTP AR 4: 99622756 c.2593G>T p.Gly865Ter AJ(2); C(7); B(3); O(2) US(12); O(2) AJ(14) abetalipoproteinemia 1 in 293

BLM AR 15: 90766923-

90766928

c.2207_

2212delATCTGA

insTAGATTC

p.Tyr736fs AJ(1); C(11); B(1); O(4) US(13); O(4) AJ(16); O(1) Bloom syndrome 1 in 256

MPL AR 1: 43337929 c.79+2T>A – AJ(5); C(20); B(11); O(5) US(33); O(8) AJ(41); O(1) congenital

amegakaryocytic

thrombocytopenia

1 in 103

RTEL1 AR 20: 63695619 c.3791G>A p.Arg1264His AJ(8); C(15); B(4); O(3) US(27); O(3) AJ(29); O(1) dyskeratosis congenita 1 in 141

ELP1 AR 9: 108899816 c.2204+6T>C

(IVS20+6T>C)

– AJ(16); C(42); B(20); O(14) US(75); O(17) AJ(88); O(4) familial dysautonomia 1 in 47

ABCC8 AR 11: 17397055 c.3989-9G>A – AJ(10); C(23); B(9); O(5) US(41); O(6) AJ(49) familial hyperinsulinism 1 in 87

ABCC8 AR 11: 17395888-

17395890

c.4160_

4162delTCT

p.Phe1387del AJ(1); C(3); B(1) US(5); O(0) AJ(5) familial hyperinsulinism 1 in 820

FANCC AR 9: 95172033 c.456+4A>T – AJ(4); C(24); B(4); O(5) US(33); O(4) AJ(37) Fanconi anemia 1 in 111

GBA AR 1: 155240660-

155240661

c.84dupG p.Leu29Alafs*18 AJ(4); C(4); B(1); O(2) US(10); O(1) AJ(10); O(1) Gaucher disease 1 in 410

TMEM216 AR 11: 61393965 c.218G>T p.Arg73Leu AJ(11); C(15); B(6); O(5) US(35); O(2) AJ(37) Joubert syndrome 1 in 111

BCKDHB AR 6: 80168945 c.548G>C p.Arg183Pro AJ(4); C(17); B(3); O(5) US(23); O(6) AJ(29) maple syrup urine

disease

1 in 141

MCOLN1 AR 19: 7526759 c.406-2A>G – AJ(6); C(13); B(1); O(3) US(20); O(3) AJ(23) mucolipidosis IV 1 in 178

GJB2 AR 13: 20189415 c.167delT p.Leu56fs AJ(32); C(74); B(19); O(15) US(117); O(23) AJ(133); O(7) nonsyndromic hearing

loss

1 in 31

TCIRG1 AR 11: 68041392 c.117+4A>T – AJ(7); C(4); B(4); O(2) US(14); O(3) AJ(15); O(2) osteopetrosis 1 in 273

(Continued on next page)
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disease across an individual’s genome into a single risk score.

We selected previously validated and published PRS for five

common diseases withmajor public health impact: cardiovascu-

lar disease, atrial fibrillation, type 2 diabetes, inflammatory bowel

disease, and breast cancer (Khera et al., 2018). Since these

PRSs were derived and validated in individuals of primarily Euro-

pean ancestry, we restricted our analyses to European ancestry

participants in BioMe, to avoid confounding due to genetic

ancestry (Martin et al., 2017; De La Vega and Bustamante,

2018; Martin et al., 2019). This allowed us to calculate PRS dis-

tributions for each disease in European ancestry participants

(N = 10,273) and normalize the distributions as Z scores

(mean = 0, standard deviation = 1). We then stratified the partic-

ipants into members of the AJ IBD community (N = 4,337) and

non-Jewish EA IBD communities (N = 5,936) and re-examined

the normalized distributions. We observed that the distribution

of the PRS between communities were significantly different

for all five diseases examined (Figure 4B; two-sided t test),

with the largest difference observed for T2D (Dmean = 0.77,

p < 13 100�300) and the smallest for inflammatory bowel disease

(Dmean = 0.11, p < 4.0 3 10�7). Notably, we saw a significantly

elevated prevalence of inflammatory bowel disease within the

topmost decile in the AJ IBD community, relative to the non-Jew-

ish EA (Figure 4C; chi-square test p < 0.0006). Furthermore, we

observed significant differences in predictive power for the

PRS for inflammatory bowel disease between the non-Jewish

EA and AJ IBD communities, respectively (area under the curve

[AUC] = 56.56% [95% CI = 50.43–62.69], AUC = 65.57% [95%

CI = 60.50–70.63]; p < 0.013). These observed differences

across communities mirror previously observed differences in

PRS performance across continental ancestry groups attribut-

able to the impact of genetic drift in the calculation of PRS, rather

than differences in genetic contributions (Martin et al., 2019).

This highlights the growing importance of understanding fine-

scale population structure in PRS models.

DISCUSSION

Here, we demonstrate how genetic ancestry may be used for

fine-scale population healthmonitoring inmedicine.We examine

the intersection of R/E, captured both as EHR and self-reported,

and genetic ancestry in a large urban health system and show

how EHR reporting imperfectly captures R/E compared with

self-reporting, while genetic ancestry reveals additional

complexity in population structure compared with self-reporting.

We apply a framework to detect fine-scale population structure

by characterizing a network of distant relatednesswithin patients

in the BioMe biobank and show 17 distinct IBD communities that

are highly correlated with culturally endogamous groups and

recent diaspora to NYC from countries around the world. By link-

ing to EHRs and testing for enrichment of ICD-9/10-based health

outcomeswithin uncovered communities, we demonstrate a sig-

nificant community-specific enrichment of both anticipated and

novel health-related traits. This suggests that IBD communities

could be used to identify patient populations at elevated risk

for diseases that may not be otherwise captured via available

population labels. Furthermore, we demonstrate significant dif-

ferences in the distribution and accuracy of PRS for common
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disease between two IBD communities of shared continental

ancestry, suggesting that fine-scale genetic structure elucidated

by these community definitions may also have important impli-

cations for improving genomic risk prediction for common

diseases.

This work also elucidates the extent and complexity of founder

populations in NYC. We show that many of the IBD communities

exhibit evidence of founder effects, as demonstrated by elevated

levels of autozygosity, median within-community IBD sharing,

and application of methods that measure the degree of distance

between communities in the network topology. This approach

resulted in more accurate prevalence estimates for founder var-

iants linked to genetic disorders compared with those derived

using populations defined by self-reported R/E or geographical

region of origin. This suggests that IBD communities could be

used to identify patient populations at elevated risk for genetic

disorders that may not be otherwise captured via available pop-

ulation labels. We identified both canonical founder populations

with known historical evidence of founder events, including AJ

(Atzmon et al., 2010) and Finnish (Martin et al., 2018) populations,

as well as less well-characterized founder populations in NYC,

namely populations of Garifuna (Atzmon et al., 2010; Herrera-

Paz et al., 2010), PR (Belbin et al., 2017), Colombian (Carvajal-

Carmona et al., 2003; Mooney et al., 2018), and Ecuadorian

and Dominican (Browning et al., 2018) descents. Overall approx-

imately one-quarter of BioMe participants harbor genetic signa-

tures of founder effects, and extrapolating this observation to the

demographics of NYC, we estimate that approximately 15% of

New Yorkers could be genetically linked to one or more founder

populations. This finding mirrors similar observations of founder

effects in large, predominantly European ancestry biobanks in

Finland (Martin et al., 2018) and rural Pennsylvania (Staples

et al., 2018), where founder effects were found to be ubiquitous

in the former and in approximately one-fifth of the latter cohort. A

recent study of a direct-to-consumer genetic database of

approximately 770,000 customers across the United States

also revealed myriad signatures of founder effects that could

be attributed to pre-diaspora population structure and/or post-

diaspora isolation, i.e., multiple Irish ancestry groups in Boston

(Han et al., 2017). This suggests that as more massive-scale

population-based biobanks emerge, evidence will increasingly

show that founder effects and founder populations may be

more common, and their origins more complex, than previously

thought.

A better understanding of population structuremay also impact

the use of genomic information to inform patient care of geneti-

cally driven disease, such as cancer detection and treatment

(Deng and Nakamura, 2017), pre- and perinatal testing (Peters

et al., 2015; Hui and Bianchi, 2017), and new applications of

routine genomic screening for preventive health (Trivedi, 2017).

For example, in recent work in the same populations, we showed

that individuals with AJ founder variants in BRCA1 and BRCA2

genes were twice as likely to have undergone clinical genetic

testing comparedwith other groupswith founder variants in these

genes, despite similar rates of cancer (Abul-Husn et al., 2019). A

lack of patient and/or provider awareness about population-spe-

cific risks may impact rates of genetic testing (Williams et al.,

2019). For common diseases, which are largely influenced by
non-genetic factors, but neverthelessmay also have a substantial

genetic component, this is particularly true. Understanding com-

plex patterns of distant relatedness at a population level can pro-

vide simultaneous insights into both genetic and environmental

factors underlying disease. For example, the observed elevation

of risk for asthma in PR populations can be linked to a host of

environmental and socioeconomic contributing factors differen-

tially impactingPRscomparedwith otherHispanic/Latinx groups,

while PR-specific genetic determinants have yet to be identified

(Szentpetery et al., 2016). This demonstrates how genomics

can be an extremely useful tool to help uncover non-genetic dis-

ease factors contributing to common disease and also cautions

against oversimplified assumptions that one population group

is more genetically predisposed to disease versus another.

Our approach has a number of limitations that we highlight

here. The fine-scale population structure in the BioMe biobank

uncovered by our approach is often strongly correlated with

certain population labels and demographic information captured

by our survey instruments. However, as no ground truth informa-

tion exists by which to evaluate the accuracy and efficacy of

community assignments, the community labels must be consid-

ered supported by evidence rather than definitive. In some

cases, we demonstrated weak evidence of correlation with

collected population labels, which was challenging to interpret,

most notably for the putative Garifuna community. Evidence to

support the community assignment was limited to the observa-

tions of (1) tight clustering of individuals in PCA space, indicating

uniform proportions of African and Amerindigenous genetic

ancestry in community members, which are each indicative of

a founder population; and (2) evidence of a very tight bottleneck

using IBD tract-length modeling, the timing of which is coinci-

dent with the known historical founder events in the Garifuna

population. However, we demonstrate that even in the absence

of conclusive evidence to ascribed population labels, consistent

and well-defined genetic communities can be clinically useful.

Finally, the success of defining IBD-based communities is

contingent on existing patterns of assortative mating in a given

population dataset, which is influenced by cultural endogamy,

patterns of migration, geographical proximity, and other demo-

graphic forces. In addition, a person could have ancestry from

two or more communities or self-reported groups (6.5% of par-

ticipants in this study). In these instances, any one particular

community assignment may be sub-optimal for precision medi-

cine applications and indicates future directions to develop

methods that can model population structure jointly as contin-

uous and discrete processes.

This work contributes to the ongoing conversation about the

role of R/E in medicine. Some have argued that R/E is not biolog-

ically meaningful (King and Owens, 2001; Cooper et al., 2003)

and have demonstrated potential harms connected to the use

of race in patient care (Vyas et al., 2020). Others contend that

R/E categories are correlated with underlying genetic and/or

socioeconomic factors impacting disease and that capturing

R/E information is biologically and clinically useful (Burchard

et al., 2003). Here, we demonstrate that embedding genomic

data in health systems, and using it to infer genetic ancestry,

will allow the development of evidence-based means to utilize

R/E, genetic ancestry, and the socioeconomic determinants of
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health for both rare and common diseases. Finally, the network-

based machine learning approaches applied here are highly

scalable to very large datasets of individuals. As more genomic

data become available in health systems globally (Stark et al.,

2019), and via large research projects (Bycroft et al., 2018; All

of Us Research Program Investigators et al., 2019), we anticipate

approaches such as ours will uncover increasing nuances in the

population structure. Furthermore, as EHRs evolve and increase

in resolution of longitudinal phenome data (Abul-Husn and

Kenny, 2019), they will offer enhanced opportunities to monitor

health in real time, allowing for agile programs of discovery, pre-

diction, and intervention.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
The exome sequencing datasets used in this study were generated by Regeneron and are not publicly available. The data will be

made available for purposes of replicating the results by contacting the corresponding author and appropriate collaboration and/or

data sharing agreements.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population
The BioMe Biobank is an electronic health record (EHR)-linked biobank of over 60,000 participants from the Mount Sinai Health

System (MSHS) in New York, NY. Participant recruitment into BioMe has been ongoing since 2007, and occurs predominantly

through ambulatory care practices across theMSHS. BioMe participants consent to provide DNA and plasma samples linked to their

de-identified EHRs. Participants provide additional information on self-reported ancestry, personal and family history through

questionnaires administered upon enrollment. This studywas approved by the Icahn School ofMedicine atMount Sinai’s Institutional

Review Board (Institutional Review Board 07–0529). All study participants provided written informed consent.
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METHOD DETAILS

Ascertainment of Race/Ethnicity Information in BioMe
Participant R/E was solicited in the form of the multiple-choice question with nine options to choose from (the exact phrasing of the

question and corresponding response options are delineated in Table S6). Prior to 2014, in addition to a multiple-choice question

about R/E, participants were also given the option to report their country of birth. After 2014, enrolling participants were provided

with options to report the country of birth of both their parents and grandparents as well. All participants recorded answers to survey

question 1, and 43.6% of participants also provided responses to survey question 2.

Genotype Quality Control
BioMe participants (N = 32595) were genotyped on the Illumina Global Screening Array (GSA) platform. Quality control (QC) of the

GSA data for N = 32595 participants and n = 635623 variants was performed stratified by R/E category. Individuals with an R/E-spe-

cific heterozygosity rate that surpassed ± 6 standard deviations of the population-specific mean, along with individuals with a call

rate of < 95%were removed (N = 684 participants in total). N = 80 individuals were then removed for exhibiting persistent discordance

between EHR-recorded and genetic sex. A further N = 126 duplicate individuals were also excluded from downstream analysis. In

total 31705 passed sample level QC for downstream analysis. All quality control steps were conducted using Plink(v1.90b3.43) (Pur-

cell et al., 2007; Chang et al., 2015). Sites with a call rate below 95% were excluded (n = 19253), along with sites that were seen to

significantly violate Hardy-Weinberg equilibrium (HWE) when calculated stratified by ancestry. HWE thresholds for site exclusion var-

ied by R/E, specifically we set a threshold of p < 1x10�5 in for all populations except HL, where it was set to p < 1x10�13 (n = 11503

SNPs in total). This resulted in the retention of n = 604869 sites.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of Electronic Health Record versus self-reported Race/Ethnicity
Race/ethnicity (R/E) information was extracted from the Electronic Health Records (EHR) for all BioMe participants for every available

patient visit between January 2007 and December 2014. This window of time was selected as R/E was recorded using consistent cat-

egories.Wedonothave informationwhether theR/Ewas inputtedbyamedical professionalor thepatient.ThepossibleR/Edesignations

within this time frame consisted of ‘‘African American (Black),’’ ‘‘Asian,’’ ‘‘Caucasian (White),’’ ‘‘Hispanic/Latino,’’ ‘‘Native American,’’

‘‘Other,’’ ‘‘Pacific Islander’’ or ‘‘Unknown.’’ For individualswhohadgreater thanone interactionwith thehealthcaresystemandconflicting

EHR recorded R/E, we selected the R/E designation assigned at their earliest visit for downstream comparison to self-reported R/E.

We mapped EHR recorded R/E to self-reported R/E for N = 36061 BioMe participants across 1492428 healthcare visits in total. For

individuals who only self-reported one R/E, in instances where that category had a direct mapping to one of the EHR R/E variables,

we made a direct comparison between self-reported and EHR recorded R/E to calculate the percentage of individuals who had been

miss-classified in the EHR, with the exception that we collapsed individuals who self-identified as ‘‘Caucasian/White’’ (N = 7691),

‘‘Jewish’’ (N = 934), or both (N = 935) into one group that we describe as ‘‘European American,’’ and mapped this to the EHR category

of ‘‘Caucasian (White).’’ We alsomapped individuals who self-identified as ‘‘East or Southeast Asian (i.e. China Japan Korea Indonesia)’’

only to the EHR category ‘‘Asian.’’ The additional R/E categories derived from theBioMe surveywere specifically namely ‘‘SouthAsian,’’

‘‘Mediterranean,’’ ‘‘Other,’’ or ‘‘Multiple’’ selected ethnicities at enrollment (Table S1; N = 5685 individuals across 182149 healthcare

visits). Individuals who self-reported as South Asian were most often classified as ‘‘Other’’ (45.9%) or ‘‘Asian’’ (25.8%). Individuals

who self-identified as ‘‘Mediterranean’’ weremost often classified as ‘‘Caucasian (White)’’ (59.6%) or ‘‘Other’’ (15.7%), while for individ-

uals who either self-reported as ‘‘Other’’ or who checked multiple categories there was no clear majority designation (Figure S1A).

Collapsing of Self-Reported Race/Ethnicity Questionnaire Data to explore the relationship with genetic ancestry
To explore the relationship between self-reported R/E and genetic ancestry for the N = 31705 BioMe participants genotyped on the

GSA array, we collapsed self-reported R/E information into 8 categories: ‘‘African American/African’’ (N = 7055), ‘‘East/South-East

Asian’’ (N = 784), ‘‘South Asian’’ (N = 622), ‘‘Native American’’ (N = 55) ; participants who selected ‘‘Caucasian/White,’’ ‘‘Jewish’’ or

both were designated ‘‘European American’’ (N = 8619), and participants who selected ‘‘Hispanic/Latin American’’ and any other

category were designated as ‘‘Hispanic/Latino’’ (N = 10682). Participants who selected ‘‘Mediterranean,’’ ‘‘Other’’ or both were

designated as ‘‘Other’’ (N = 2559). Finally, participants who selected any other combination of multiple categories were designated

as ‘‘Multiple Selected’’ (N = 1329).

Genetic Relatedness Estimation
Pairwise kinship coefficients were estimated for all BioMe participants (N = 31705) using all N = 604869 SNPs that passed QC using

the KING software (Manichaikul et al., 2010) (v1.4) by passing the –kinship flag.

Global Ancestry Estimation
Prior to calculating PCA we restricted analysis to common (minor allele frequency (MAF) > 0.01), autosomal sites. We also removed

regions of the genome known to be under recent selection, specifically HLA (chr6: 27032221-35032223, hg38), LCT
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(chr2:134242429-136242430), an inversion on chromosome 8 (chr8:6142478-16142491), a region of extended LD on chromosome

17 (chr17:41843748-46922634), EDAR (chr2:108383544-109383544), SLC2A5 (chr15:47707803-48707803), and TRBV9

(chr7:142391891-142392412). Finally, the GSA data was intersected with and merged with genome sequence data from 26 popu-

lations in 1000 Genomes Project phase 3 reference panels (The 1000 Genomes Project Consortium, 2015) (TGP; N = 2504), and

53 populations in the Human Genome Diversity Panel (Cann et al., 2002) (HGDP; N = 986) and 8 additional reference panels

genotyped as part of the PAGE consortium (Bari, Khomani, Nama, Oaxacan, Peru Warao, Yukpa, Zapotec) from the Population

Architecture using Genomics and Epidemiology (PAGE; N = 700) study, both genotyped on the Multi-Ethnic Genotyping Array

(MEGA). This resulted in a total of n = 260502 snps and N = 35854 individuals. The first 20 PCs were calculated using PLINK

(v1.9). We also ran ADMIXTURE (Alexander et al., 2009) with 5-fold cross validation from k = 2 to k = 12 across all individuals inferred

to be unrelated (N = 32354 in total, including reference panels), by randomly removing one of each individual in a pairwise relationship

defined by KING to be greater than 3rd degree relatives (as defined by a pairwise kinship coefficient of > = 0.0442 in the KING output;

this resulted in the exclusion of N = 3500 BioMe participants in total). To visualize fine-scale population substructure we applied the

UniformManifold Approximation and Projection (UMAP) (McInnes et al., 2018) to the first 10 principal components across all samples

using the ‘‘umap’’ library in R using the default parameters.

Phasing and Identity-by-Descent Inference
Prior to phasing and inference of Identity-by-Descent, the GSA array data for BioMe participants was lifted over to GRCh37/hg19,

before additional quality control was performed on variants, including the removal of SNPswith a call rate below 99% (n = 48436) and

variants with a MAF < 1% (n = 135011). Palindromic variants were also excluded at this stage (n = 4375). The data was subsequently

merged with the TGP reference panels (N = 2504 individuals), and only intersecting sites were retained, resulting in the retention of

n = 402042 SNPs in total. Phasingwas subsequently performed per autosome on all N = 34209 individuals with the SHAPEIT software

(O’Connell et al., 2014) (v2.r790) using the hapmapII genetic map (build: GRCh37/hg19) using default flags and –output-max –force.

Phased haplotypes were subsequently converted to plink format and IBD was called using the iLASH software(Shemirani et al., no

date) using the following flags:

slice_size 400, step_size 400, perm_count 12, shingle_size 20, shingle_overlap 0, bucket_count 4, max_thread 20, match_thres-

hold 0.99, interest_threshold 0.70, max_error 0, min_length 3

For quality control, IBD tracts that overlapped with low complexity regions were excluded, along with IBD tracts that fell within re-

gions of excessive IBD sharing, which we defined as regions of the genome where the level of pairwise IBD sharing exceeded 3 stan-

dard deviations above the genome-wide mean (Figure S4C).

Network Construction and Community Detection
To construct the IBD network, IBD tracts along the genome were summed between each pair of individuals inferred to be 2nd degree

relatives or less from BioMe and the 1000 genomes reference panel (N = 31688 individuals in total (N = 29184 of which were BioMe

participants inferred to be < 2nd degree relatives, and N = 2504 samples from TGP)) to generate the total sum of IBD sharing per

pairwise relationship. This was used to construct an adjacency matrix where each node represents an individual and each weighted

edge represents the pairwise sum of IBD sharing. To detect the presence of structure within the IBD network we used the implemen-

tation of InfoMap (Rosvall and Bergstrom, 2008) in the iGraph package (R version 3.2.0). Visualization of the IBD network was also

performed using iGraph using a Fruchtermen-Reingold layout (with n = 1000 iterations), after excluding poorly connected nodes (< 30

connections).

IBD Network Analysis
We define neighborhood matrices as a matrix-representation of the community assignments determined by using InfoMap (InfoMap

assigns each individual one and only one community). A neighborhood matrix is an n x n order matrix, where n is the total number of

individuals in the IBD network. Individuals i and j are assigned a 1 for the same community, and 0 for different communities, corre-

sponding to positions Nij and Nji. We can extend this scheme across multiple runs of clustering estimation, particularly crucial when

measuring concordance across runs. To compare the ‘‘neighborhood’’ of individual k across multiple runs, we use a Jaccard sim-

ilarity coefficient to measure positive concordance: J = Intersection(row(k) = 1)/Union(row(k) = 1)

The Jaccard similarity coefficient obtained while comparing the k-th row of N_1 and the k-th row of N_2 constitutes a natural mea-

sure of community consistency across runs, with J = 1 if k has exactly the same neighbors in the two matrices N_1 and N_2, J = 0 if k

does not share any neighbors between the two matrices. This then naturally can be averaged across the entire matrix to determine

overall similarity of community assignments between different runs of InfoMap. We use this as our statistic for our permutation

testing, by comparing our observed network structure to topologically similar random networks with consistent numbers of edges

created with the Erd}os–Rényi (ER) model. An empirical p value ascertaining the stability of community assignments represents

the probability of randomly obtaining an identical neighborhood matrix as the neighborhood matrix obtained by running InfoMap

with the original IBD network.

Community assignments were ascertained by using InfoMap both for stability and robusticity on the original IBD-based network

(10 times) and on 100 sets of topologically similar random networks generated with the ER model. We computed the clustering
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coefficient (i.e. the ratio of existing edges between the neighbors of a specific node relative to the total number of potential edges

between said neighbors) for each community. In addition, we used the Wasserstein distance (Villani, 2009).

Analysis of IBD Community Membership Using Population Labels
To explore the correlation between self-reported country of origin, subcontinent and R/E and IBD community membership for BioMe

participants we calculated Positive Predictive Values (PPVs), Negative Predictive Values (NPVs), sensitivity and specificity for each

self-reported label versus membership of each IBD community using the ‘‘caret’’ library in R (Kuhn, 2008). For each of these metrics

we treated the self-reported information as the ‘ground truth’ and the IBD-community designation as the predictor. For the analyses

by country and subcontinental origin, US-born BioMe participants were excluded from the calculations.

Inference of Runs of Homozygosity
Runs of homozygosity were also calculated using bcftools/1.0 (Narasimhan et al., 2016). Analysis was performed stratified by IBD

community, and using IBD community specific allele frequencies and including genetic maps. Post ROH inference, analysis was

restricted to tracts of greater than 3MB in length.

Phenotype ontology
15665 unique ICD-9 and ICD-10 billing codes from theMount Sinai BioMe biobankwere collapsed into 1764 phenotype codes (Phec-

odes) (Wu et al., 2019; Denny et al., 2010) on the basis of the PheWAS catalog (https://www.phewascatalog.org) using an in-house R

script (R version 3.4.1).

Analysis of Enrichment of Phecodes within IBD-Communities
We performed logistic regression systematically across 1764 phecodes and all IBD communities with > = 500 members who were

also BioMe participants (N = 7 in total), (i.e., excluding communities predominantly composed of individuals from the 1000 Genomes

Reference panel). To avoid spurious association, phecodes that were present in less than 10 instances per community were excluded

from the analyses. To perform the regression we encoded IBD community membership as a binary predictor variable and generated

Plink format ‘‘ped’’ files for each community, where community membership was encoded as ‘‘1’’ and non-membership encoded as

‘‘2.’’ We then performed logistic regression for each phecode and for each community using Plink(v1.9), adjusting for age and sex as

covariates, and excluding 2nd degree relatives and above. Statistical significance was determined for each IBD community-wide as-

sociation via Bonferroni correction.

Genotype Imputation and Polygenic Risk Score Estimation
Imputation was performed on phased haplotypes (described previously) using IMPUTE(v2.3.2) (Howie et al., 2009) with the phase III

Thousand Genomes data as reference panel, and the addition of the following flag: ‘‘-filt_rules_1 ‘ALL<0.0002’ ‘ALL>0.9998’.

Weights for polygenic risk scores (PRS) for five diseases and body mass index (BMI) were downloaded from: http://kp4cd.org/

dataset_downloads/mi

PRS were calculated for each of the five diseases across all N = 31705 BioMe participants by summing genotype data previously

imputed to the Thousands Genomes Phase III reference panel using the ‘‘–score sum’’ flag in PLINK(v1.9) and participants were sub-

sequently stratified into groups based on their IBD community membership for further analysis. PRS performance was assessed by

calculating the Area Under the Curve (AUC) using the pROC package (Robin et al., 2011) in R using disease case status for a given

phecode as the outcome variable, and PRS as the predictor variable.

Annotation of Clinically Relevant Founder Variation from Exome Data
Founder variants for both the AJ and PR communities were curated via literature review and extracted from exome data available for

the N = 27727 BioMe participants that were a part of the community detection analysis. The number of heterozygous carriers for each

variant was then ascertained for the subset of N = 27627 participants for whom the self-reported ancestry survey information was

complete. This analysis was performed stratified by self-reported R/E, self-reported country of origin, and IBD-community member-

ship using PLINK(v1.9)
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Figure S1. Exploration of R/E and genetic ancestry in a health system, related to Figure 1

(A) EHR R/E designations for individuals whose self-reported R/E did not correspond to one of the EHR categories. The x axis represents self-reported R/E

categories from BioMe and the y axis represents the percentage of EHR recorded R/E designations per group by R/E category.

(B) UMAP projection of the first 10 principal components for BioMe participants. (A) UMAP colored by self-reported ethnicity for the BioMe participants genotyped

on the GSA array colored by self-reported R/E. (B) UMAP of all BioMe participants (gray) along with reference samples from 87 global populations colored by

Continental region of origin.

(C) ADMIXTURE runs from k = 2 to k = 12 in N = 31705 unrelated BioMe participants and reference samples from 87 global populations. ADMIXTURE output of

BioMe participants stratified by their self-reported R/E (left) and reference samples from 87 global populations (right). Populations labeled ‘‘AFR’’ correspond to

reference samples from Africa, ‘‘EUR’’ from Europe, ‘‘OCE’’ from Oceania, ‘‘EAS’’ from East Asia, ‘‘SAS’’ from South Asia and ‘‘AMR’’ from the Americas.
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Figure S2. Network-based inference of fine-scale populations, related to Figure 2

(A) Schematic of the IBD-community detection workflow. (i) Haplotypes inherited Identical-by-Descent (IBD) from a recent, common ancestor are present and

readily detectable in genomic data. (ii) Detected IBD segments can be used to construct an adjacency matrix where the pairwise relationship between each

BioMe participant is represented by the total sum of IBD segments they share across their genome (cM). (iii) This adjacency matrix can be used to construct a

network where every node represents an individual and each (weighted) edge represents the sum of IBD sharing between a given pair. (iv) Running the community

detection algorithm InfoMap over the IBD network allows for the detection of ‘communities’ of individuals that are statistically enriched for the sharing of IBD. (v)

InfoMap returns community membership status for each node in the network. (B). Median sum of IBD sharing within and between the largest IBD Communities in

BioMe. Each tile within the heatmap represents the median sum of IBD haplotype sharing (log10 scale) within and between- IBD communities, with blue rep-

resenting higher IBD sharing and yellow representing lower levels of sharing. (C) Positive Predictive Values (PPVs) for geographical origin versus IBD Com-

munities. PPVs for country of origin versus the 17 largest IBD communities. (D) PPVs for sub-continental region of origin. Results are only shown for population

labels with a PPV > = 0.1 for at least one IBD community. (E) PCA analysis of BioMe European Americans reveals IBD-Community membership reflects genetic

Jewish versus non-Jewish ancestry. (Left) PCA plot of BioMe participants who self-identify as ‘‘Jewish’’ (blue) and ‘‘Caucasian/White’’ (yellow) reveal clustering in

(legend continued on next page)
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PCA space. (Right) The same PCA plot colored by IBD-community membership, where community ‘‘2’’ (red) appears to represent genetic Jewish ancestry, while

community ‘‘4’’ (dark blue) represents Non-Jewish European ancestry. (F) PCA analysis with of the BioMe IBD community inferred to be Garifuna. BioMe par-

ticipants who belong to the IBD community that we infer are likely to be Garifuna (teal) cluster on a cline between the African (blue) and Amerindigenous (green)

reference panels.
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Figure S3. Comparison of IBD communities and k-means clustering to explore genetic ancestry, related to Figure 2

IBD based community detection versus k-means clustering over principal component analysis. Comparison of population designation using k-means clustering

versus IBD communities with strong PPVs (> 0.9) for a particular country of origin. The first panel of each plot represents classification metrics for IBD community

(legend continued on next page)

ll
Article



detection against a given country of origin, specifically Puerto Rican (A), Dominican (B), Ecuadorian (C), Colombian (D), Mexican (E) and Ethiopian (F). The

following panels represent the same metrics for the cluster obtained via k-means clustering over PCA with the highest PPV for a given specification of k (ranging

from k = 5 to k = 20). In each instance the IBD-community detection is constantly able to better classify individuals in recent diaspora populations based on

Positive Predictive Value, Negative Predictive Value, Sensitivity and Specificity.
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Figure S4. Related to Figure 3

(A) Distribution and properties of IBD sharing within and between IBD communities. Analysis of the distribution of degree sharing within versus between com-

munity for the Ashkenazi Jewish, African Diaspora, Non-Jewish European, Filipino, Central/South American, Korean/Japanese, Bangladeshi, Mexican, Finnish,

Vietnamese, Tuscan andKenyan communities. The intra-community degree distribution is shown in color and the inter-community degree distribution is shown in

gray. The strong bimodality in the degree distributions of the Ashkenazi Jewish and Finnish communities, quantified by a Wasserstein metric value of 0.82 and

0.79 respectively, are indicative of a founder effect. The distributions related to the other communities show low bimodality, quantified by Wasserstein metric

values ranging from 0.03 to 0.24 (B) Estimated effective population size for IBD communities inferred via IBDNe. Estimated effective population size of the 17

largest IBD communities. (C) Pile up of Identity-by-Descent (IBD) haplotype sharing along the genome in BioMe and TGP samples (N = 34209 total). Each panel

represents the number of shared IBD haplotypes covering a given site for each of the 22 autosomes. The x axis represents the physical position along the

chromosome (Mb) and the y axis represents the number of haplotypes covering each position. The red dashed lines represent ± 3 standard deviations from the

genome-wide mean.
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