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ABSTRACT
An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor

samples based on paired exome data where a matched healthy tissue constitutes the reference have been

published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previ-

ously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still

aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design

a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed

the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference

in exome-based CNV detection. We compared the CNV profiles obtained with three different approaches

(aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of

eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual

analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution)

lack in precision when confronted with low LRR values, as they only consider the binary status of each

CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV pro-

files. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma

samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample.
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1 INTRODUCTION

Copy number variations (CNVs) are genomic modifications

responsible of phenotypic diversity but are also involved

in many pathologies like cardiovascular diseases, autoim-

mune diseases, neurodegenerative diseases, and cancers

(Beroukhim et al., 2010; Kim et al., 2013). In cancers chro-

mosomal alterations might lead to several specific genomic

profiles which can be linked to prognosis or response to treat-

ment, for example the amplification of the ERBB2 gene in

breast cancer leads to its overexpression, and to sensitivity to

treatment by trastuzumab (Robert et al., 2006).

Multiple myeloma is a hematological cancer characterized

by a high level of CNV, implicating plasma cells. Some of

them are linked to an adverse prognosis: del(17)(p), del(1)(p),

dup(1)(q), and del(13) (Fonseca et al., 2004; Walker et al.,

2010). On the other hand, hyper-diploidies involving odd

chromosomes are rather associated with a favorable outcome

(Smadja et al., 2001). CNV assessment during treatment

course of these malignancies is also essential to evaluate dis-

ease progression (Avet-Loiseau et al., 2009; Chung, Mulligan,

Fonseca, & Chng, 2013).

Traditionally, CNV detection has been performed with

cytogenetic techniques such as fluorescent in situ hybridiza-

tion (FISH). Comparative genomic hybridization arrays

(aCGH) are currently considered as the reference technology

to measure genomic alterations. However, next-generation

sequencing (NGS) could soon become an essential tool for

cancer study as it allows the detection of punctual mutations

and insertions/deletions. Moreover, whole genome sequenc-

ing (WGS) can also be used for the detection of CNVs and

displays a higher resolution than aCGH, down to 40 bp (Xi

et al., 2011). However in the clinical field, WGS is too expen-

sive and WES or targeted sequencing is more commonly con-

sidered. CNV are more easily computed from WGS data,

as the entire genome is theoretically sequenced at constant
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coverage and one does not have to take into account the inter-

probe coverage variability that arises in WES (Hwang et al.,

2015; Liu et al., 2013). That being said, WES focuses on a

highly function-enriched subset of the genome and it requires

smaller computational resources for processing and storage of

the data than WGS. For these reasons, a number of dedicated

computational algorithms have been developed to accurately

retrieve segmental CNV from WES data (Guo et al., 2013;

Tan et al., 2014).

Several factors are responsible for biases in CNV detection:

GC rich fragments, variability of the fragmentation process

during library preparation, or copy number polymorphisms.

Most of the bioinformatic tools set-up for CNV detection in

tumor by WES consider these potential biases and try to min-

imize them (Xi et al., 2011). Some of the algorithms designed

to detect CNV on tumor samples also require a matched paired

healthy tissue sampled from the same patient, as they use the

read depth ratio between tumor and healthy sample to infer

the copy number at each locus. This control sample needs to

be compiled from the same technological platform. However,

such paired reference tissue is very seldom available, espe-

cially in large epidemiology studies, and could theoretically

be replaced by the use of a pool of unrelated healthy tissues

from patients of the same ethnicity (Sathirapongsasuti et al.,

2011). However, no data are currently available in the liter-

ature to state if this solution would allow the acquisition of

comparable CNV results.

To evaluate if the replacement of the matched paired

healthy tissue with a pool of unrelated healthy tissue confers

the same results, we have compared the performances of these

two reference types against results obtained by aCGH, consid-

ered as the gold standard.

The whole study was conducted on a multiple myeloma

(MM) cohort. Malignant cells population was enriched by

positive selection, and analyzed by WES (Nextera, Illumina)

and aCGH (SureSelect, Agilent).

2 MATERIALS

2.1 Ethical concerns

Ethics approval was obtained from the Institutional Review

Board (Ethical Committee of the Faculty of Medicine of the

University of Liège) in compliance with the Declaration of

Helsinki. All patients signed a written informed consent form.

This work consisted of a prospective study and did not lead to

any change in the treatment of enrolled patients.

2.2 Patients and sample preparation

Bone marrow samples of 10 MM patients were obtained

from CHU of Liège. CD138 human MicroBeads (Miltenyi

Biotec) were used to positively select plasma cells and enrich

malignant cell populations. Genomic DNA (gDNA) was

extracted from enriched plasma cells using AllPrep DNA

extraction kit (Qiagen) following manufacturer’s instructions.

Normal gDNA for three of these patients was collected and

extracted from buccal cells with Gentra Puregene Buccal Cell

Kit (Qiagen) following manufacturer’s instructions. Eight

additional normal DNA were also extracted using the same

methodology and separately sequenced to constitute a pool of

normal DNA.

2.3 aCGH and CNV analysis

Plasma cells of the whole MM cohort were analyzed with the

SurePrint G3 Human CGH Microarray Kit 8 × 60K (Agi-

lent Technologies) according to manufacturer’s instructions,

and results were interpreted using the Cytogenomics soft-

ware (Agilent Technologies). The arrays were scanned with

a G2565CA microarray scanner (Agilent Technologies) and

the images were extracted and analyzed with CytoGenomics

software v2.0 (Agilent Technologies). An ADM-2 algorithm

(cut-off 6.0), followed by a filter to select regions with three

or more adjacent probes and a minimum average log2 ratio

of ±0.25, was used to detect copy number changes. The qual-

ity of each experiment was assessed by the measurement of

the derivative log ratio spread with CytoGenomics software

v2.0. Genomic positions were based on the UCSC human ref-

erence sequence (hg19) (NCBI build 37 reference sequence

assembly).

2.4 Whole exome sequencing and CNV call

Fifty nanograms of double-stranded gDNA were used to pre-

pare libraries with a Nextera Rapid Capture Expanded Exome

Kit (Illumina) according to the manufacturer’s instructions.

Libraries were checked for integrity using Agilent High Sen-

sitivity DNA Kit (Agilent Technologies) after tagmentation

and after the last step of library preparation. Sequencing reac-

tions were performed on a HiSeq2000 sequencer (Illumina).

3 METHODS AND RESULTS

3.1 Whole exome sequencing and CNV call

The raw sequencing data were aligned on the Human refer-

ence genome (NCBI build 137 hg19) with the BWA software

(Li & Durbin, 2009). The resulting alignment BAM files went

through several filtering and correcting steps (local realign-

ment, base quality score recalibration, low quality reads fil-

tering, and PCR duplicate reads removal) performed using

the Genome Analysis Toolkit (McKenna et al., 2010) and the

Picard software package (http://picard.sourceforge.net/).

A slightly modified version of the coverage files gener-

ated by the CalculateHsMetrics tool of the Picard software
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package (using the PER_TARGET_COVERAGE software

option) was used as input of the ExomeCNV software (ver-

sion 1.4).

For three tumor samples for which matched normal tissue

was available, two CNV profiles were called using the rec-

ommended parameters of ExomeCNV: one with the matched

normal sample as control and the other one with a pool of

unrelated healthy samples as control.

The ExomeCNV input file representing the pool of eight

unrelated healthy samples is generated thanks to a Perl script

that averages the coverage and average_coverage columns

of the Exome CNV input file among all unrelated healthy

samples.

The Perl scripts used to convert the output files of the Cal-

culateHsMetrics tool to input files suitable for ExomeCNV

and to generate the ExomeCNV input file for the pool are

available as supplementary data.

3.2 CNV profiles comparison

Several analyses were performed to compare the CNV pro-

files obtained through aCGH, Exome CNV with the matched

normal sample as control and Exome CNV with the pool of

eight unrelated healthy samples as control. Only autosomes

were considered in this study.

For the sake of brevity, for each sample𝑆𝑘, let us note𝑆𝑘𝐶 ,

𝑆𝑘𝑀 , 𝑆𝑘𝑃 , respectively, the CNV profile obtained through

arrayCGH, the CNV profile obtained through the Exome

CNV software with the matched normal sample as control and

the CNV profile obtained through the Exome CNV software

with the pool of eight unrelated healthy samples as control.

3.3 Deletion/Amplification ratio

The deletion/amplification ratio has been determined for each

CNV profile, as to detect possible method-specific biases.

Amplifications and deletions with a |LRR| (|Log-R-Ratio|)

smaller than 0.29 (corresponding to alterations whose copy

number is approximately between 1.6 and 2.4) were consid-

ered to be inconsistent and were filtered out for all CNV pro-

files. The ratio is based on the total number of deleted and

amplified bases, as this gives a more reliable information than

a ratio based on the count of amplifications and deletions. As

shown on Figure 1, both Samples 1 and 3 show close dele-

tion/amplification ratios and absolute values for each of the

three profiles. No specific bias in favor of amplification or

deletion is found in the CNV profiles obtained through Exome

CNV software with the pool of eight unrelated healthy sam-

ples as control. Interestingly, for Sample 2, the absolute val-

ues for the number of deleted bases are very similar, but the

number of amplified bases varies. 𝑆2𝑃 thus shows a dele-

tion/amplification ratio much more similar to 𝑆2𝐶 than 𝑆2𝑀 .

This is explained by the fact that most of the missing ampli-

fications in 𝑆2𝑀 are present but have in fact a low LRR and

are filtered out. Due to their low LRR, these amplifications

are undistinguishable from false positives.

3.4 CNV size distribution

To know if the use of a pool as reference had an impact on the

size of detected CNV, we determined the CNV size distribu-

tion for each profile (see Fig. 2). Amplifications and deletions

with a |LRR| smaller than 0.29 were filtered out. Although the

absolute count of very small CNVs (< 1 kb) is higher in pro-

files obtained through the use of a pool as reference, their rel-

ative contribution remains unchanged and insignificant (see

Additional File 1).

3.5 Confusion matrix

For both exome-based CNV profiles of each sample (𝑆𝑘𝑀

and 𝑆𝑘𝑃 ), TPR (true-positive rate), FPR (false-positive rate),

TNR (true-negative rate), and FNR (false-negative rate) were

determined separately for amplifications and deletions, as

shown in Table 1. Amplifications and deletions with a |LRR|

smaller than 0.29 were filtered out. Interestingly, CNV pro-

files obtained through the use of a pool of eight unrelated

healthy individuals yield overall slightly better results. The

low TPR value for the amplifications of 𝑆2𝑀 can again be

explained by LRR values not passing the aforementioned

threshold.

3.6 CNV profile distance metric

Each of the previous analyses highlights potential biases, sim-

ilarities, and/or discrepancies between CNV profiles but, due

to methodological specificities, none gives a global picture

of the real distance between profiles, as even the outcomes

of the confusion matrix do not take into accounts the varia-

tion of copy number in amplifications and deletions (e.g., if

the reference contains a segment of copy-number 3 and the

tested profile contains a segment of copy-number 4 at the

same locus, both profiles are considered to contain an ampli-

fication, no difference penalty is taken into account and the

confusion matrix values are the same as they would be if both

segments shared the exact same copy-number).

We propose a new distance metric, designed to compare

CNV profiles, which takes into account the exact LRR val-

ues, thus giving a more precise insight, independently of the

technique used to obtain the profiles.

Each CNV profile is represented as a combination of

sequences of LRR segments of fixed size, one sequence for

each chromosome.

Let 𝑗, 𝑘 be the indexes of two CNV profiles.

At each segment 𝑠, the difference in terms or LRR between

the two profiles is noted as

|||𝐿𝑅𝑅𝑠𝑗 − 𝐿𝑅𝑅𝑠𝑘
||| .
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F I G U R E 1 Amplification and deletion ratios for each sample. Bar heights represent the percentage of amplified or deleted bases. The total number of

amplified or deleted megabases is written inside each bar

F I G U R E 2 CNV size distribution. Bar heights represent the relative contribution of each group

From each LRR value, the corresponding copy-number for

autosomes can be derived by

𝐶𝑁 = 2 × 2𝐿𝑅𝑅.

The difference in terms of copy number at each segment 𝑠

can thus be expressed as

|||𝐶𝑁𝑠𝑗 − 𝐶𝑁𝑠𝑘
||| =

|||2 ×
(
2𝐿𝑅𝑅𝑠𝑗 − 2𝐿𝑅𝑅𝑠𝑘

)||| .

We defined the distance metric between two CNV profiles

as the sum of distances between all segments divided by the

total number of segments.

𝑑 (𝑗, 𝑘) = 1
𝑆

×
𝑆∑
𝑠

|||2 ×
(
2𝐿𝑅𝑅𝑠𝑗 − 2𝐿𝑅𝑅𝑠𝑘

)|||,

where 𝑆 is the total number of segments.

The relation between the genome size, segment size, and

total number of segments is noted:
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T A B L E 1 Confusion Matrix

S1_M S1_P S2_M S2_P S3_M S3_P

AMP TPR 97.29 96.58 12.31 99.24 99.96 97.01

FPR 2.71 3.42 87.69 0.76 0.04 2.99

TNR 63.83 82.14 99.98 97.79 89.23 92.63

FNR 36.17 17.86 0.02 2.21 10.77 7.37

DEL TPR 94.83 96.43 98.01 98.01 96.82 95.88

FPR 5.17 3.57 1.99 1.99 3.18 4.12

TNR 97.5 97.59 99.63 97.4 68.06 89.29

FNR 2.5 2.41 0.37 0.6 31.94 10.71

T A B L E 2 Distance Between Each CNV Profile

Sheet 1

S1_M S1_P S1_C S2_M S2_P S2_C S3_M S3_P S3_C

S1_M 0 1.4 1.9 3.5 3.5 3.5 4.8 4.7 4.1

S1_P 1.4 0 1.3 3.5 3.1 3.3 4.5 4.5 4.2

S1_C 1.9 1.3 0 2.6 2.5 2.3 4.6 4.4 4.2

S2_M 3.5 3.5 2.6 0 0.7 0.4 4 3.7 3.6

S2_P 3.5 3.1 2.5 0.7 0 0.5 3.8 3.6 3.7

S2_C 3.5 3.3 2.3 0.4 0.5 0 4 3.6 3.5

S3_M 4.8 4.5 4.6 4 3.8 4 0 1 2

S3_P 4.7 4.5 4.4 3.7 3.6 3.6 1 0 2

S3_C 4.1 4.2 4.2 3.6 3.7 3.5 2 2 0

𝐺 = 𝑆 × 𝐿, where 𝐺 is the genome size and 𝐿 is the seg-

ment size

A Perl script implementing this distance metric is available

as supplementary data. For clarity, all distance values have

been multiplied by 10.

Table 2 shows distance values computed for all possi-

ble combinations of the nine CNV profiles generated based

on our cohort. Several observations can be made based on

these results. For each sample, the smallest distance is always

found between the two profiles obtained through the use of

ExomeCNV. For each sample, the distance between the aCGH

profile and the ExomeCNV profile using a pool of eight unre-

lated healthy individual as control is similar to the distance

between the aCGH profile and the ExomeCNV profile using

the matched paired healthy tissue as control. The intersample

distance, whatever the technique, is always greater than the

intrasample distance.

3.7 Additional validation

The same analyses were performed on 7 MM samples for

which no matched normal tissue was available. Here, only

𝑆𝑘𝑃 and 𝑆𝑘𝐶 (respectively the profile obtained through

ExomeCNV with a pool, and the profile obtained through

aCGH) were compared.

The proportion of deletion to amplification does not show

any specific bias and the amplified and deleted bases counts

are highly correlated between 𝑆𝑘𝑃 and 𝑆𝑘𝐶 (Pearson corre-

lation coefficient of 0.975, see Additional file 2 for the count

of deleted and amplified bases).

The confusion matrix values obtained when comparing

𝑆𝑘𝑃 to 𝑆𝑘𝐶are relatively similar to the previous values

obtained. The average values for the true-positive rate and

the true negative rate for the amplifications are respectively

89.85% and 92.41%. The corresponding values for the dele-

tions are respectively 97.04% and 74.97% (see Additional file

3 for the complete data).

The distance metric was computed for each pair of the 14

profiles. As previously, for each sample the intrasample dis-

tance is always smaller than all intersamples distances involv-

ing this sample. The average value for intrasample distance

was 1.8 ± 0.2, while the average value for intersample dis-

tance was 3.25 ± 0.16. All distance values are shown in addi-

tional file 4.

4 DISCUSSION

To date, several CNV detection tools catered to WES data

exist, some of these tools make use of paired healthy DNA

as references, while others use different methodologies and

do not need such references. Paired methods that use the

read depth or read count ratio are often more effective but

inadequate for the analysis of a sample without corresponding

healthy DNA.

Although ExomeCNV is a method based on read depth

using paired healthy DNA as control, its authors suggested

that a pool of unrelated healthy individuals could also be used

as reference. Based on preliminary results, the authors also

emit the hypothesis that the use of such a pool could lead

to more reliable results thanks to a reduction in variance of

depth-of-coverage (Sathirapongsasuti et al., 2011). No thor-

ough analysis had previously been performed to assess the

validity of these claims. Furthermore, we propose a new, bet-

ter suited, way to compare CNV profiles, independently of the

technique used to obtain said profile and tested this method on

a small number of multiple myeloma samples.

Research and clinical application of WES for CNV detec-

tion are most useful in the cancer field. Indeed, many clini-

cally actionable genetic changes have been described. These

changes include CNV (deletions, amplifications) as well as

punctual mutations. Their identification has an increasing

clinical impact as they define the prognosis and can also pre-

dict treatment response or resistance, paving the way toward

personalized medicine and the use of specific targeted treat-

ments. The molecular diagnosis remains, however, difficult

as it is presently based on limited amounts of DNA (from

biopsies) and has to deal with the tumor heterogeneity. More-

over, large retrospective studies based on samples stored in

biobanks are needed to validate genetic biomarkers in vari-

ous cancers.
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In our study we explored MM which is characterized by

a high genomic instability. Indeed, alterations with clinical

impact like monosomy 13 and trisomy of odd chromosomes

are easily detected with this method while partial alterations

of chromosome 1 and 17 sometimes show some approxima-

tion concerning the exact breakpoints. Even if the impact of

punctual mutations in this type of cancer is still unclear, a

few studies performed by NGS show a high level of muta-

tions implicating genes frequently involved in cancers and

coding for therapeutic targets (Chapman et al., 2011; Lohr

et al., 2014). However, as it has been demonstrated that MM is

characterized by a high level of clonal heterogeneity accord-

ing to the stage of the disease, WES allows an evaluation of

each clonal population proportion at the different stages of

the disease (Walker et al., 2014). It could therefore be help-

ful for the follow-up of patients to evaluate clonal evolution

in response to treatment at relapse. A simple method identify-

ing point mutations and CNVs is certainly required for such

a clinical application.

In conclusion, our data indicate that a reliable picture of

CNV alterations in MM samples could be obtained from WES

in the absence of a matched healthy sample. As our data were

obtained on a very low number of MM samples, they will need

to be confirmed on larger cohorts of other cancer types. If this

can be done, it would considerably facilitate genomic studies

on biobank material as well as in the clinical setting as the

collection, study and data storage for matched normal DNA is

expensive and generates cancer-unrelated incidental findings.
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