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Foreword

Some say bioinformatics is not science per se. It’s merely a tool.

I say what a wonderful tool, it is, then!

There is no field that I know of which is more interdisciplinary.

The recent advances in next-generation sequencing have opened the door to a deluge
of data. One should be cautious, though, as data is not a synonym of knowledge.

The task which I have considered to be mine during those 4 years was the transfor-
mation of data into scientific knowledge. This not an automatic process. There is no
algorithm which, given a large set of files, verifies a hypothesis.

The interdisciplinarity of bioinformatics forces oneself to become learned in state-of-
the-art methods from computer science or statistics, it pressures one to understand
intricacies of biology.

I feel fortunate to have entered this field at what I believe is still its infancy. I have
witnessed the development of new methods from scratch, the reuse of existing tools
from other fields, and the almost infinite need for new developments.

This abundance of technical and biological data, the inherent interdisciplinarity, and
the exponential necessity for innovative analyses are blessings. But they may look
like a curse when one is trying to find a unifying thread to link all the developments
and results accomplished in a thesis’ time.

I hope the reader will be understanding while browsing these pages. My short
experience tells me that bioinformatics is messy, but it’s a pleasant way of finding
answers. My desire is that, in addition to contributing to the advance of the addressed
fields, this pleasantness is reflected in the following chapters.
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Abstract

Human cancer is a disease of the cell and of the genome. In this work, I apply
machine learning, algorithmics, and software engineering methods to genomics and
transcriptomics data arising from cancer related questions.

My contributions are divided into three parts. First, this thesis treats a technical
question: the detection of copy-number variations (CNVs) in the genome of multiple
myeloma patients. Although routinely done with an existing technique (comparative
genomic hybridization), the question of the feasibility of this kind of analysis with
next-generation sequencing data had already risen. Here, we examine the process
of detecting CNVs based on the whole exome sequence of tumoral cells and in the
absence of the exome sequence of germinal cells. We show that usual comparisons to
assess the accuracy of a CNV profile are insufficient, and we propose a new method to
compare CNV profiles. Based on this method, we show that it is possible to accurately
detect CNVs in multiple myeloma patients based on exome sequencing data without
matched healthy tissue, if one uses a pool of unrelated healthy individuals as control
sample.

Second, the diagnostic aspect of breast cancer is considered, as we get into the
development of a non-invasive, blood based, diagnostic tool for breast cancer. Based
on a cohort of 378 women, we have shown that the levels of circulating microRNAs
can be used as biomarkers for the diagnostic of breast cancer. We designed a
diagnostic model using 8 microRNAs, whose levels are combined through the use
of the Random Forests algorithm. Furthermore, the specificity of our diagnostic
model is assessed on patients in remission, gynecologic tumors, and metastatic breast
cancers.

In the last part, the use of whole stranded RNA sequencing data on a cohort of 23
ER+/HER2- breast cancer patients yields various results regarding the potential
role of antisense long non-coding RNAs and their disruption in tumors. Three
different gene extraction methods are presented. For each of these methods, the
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corresponding gene set is reviewed and assayed in survival data from an external
cohort of a thousand breast cancer patients.

Résumé

Le cancer humain est une maladie de la cellule et du génome. Dans ce travail, j’ai
appliqué des méthodes issues de l’apprentissage automatique, de l’algorithmique,
et du développement logiciel, afin d’analyser des données génomiques et transcrip-
tomiques relatives à des problématiques liées au cancer.

Mes contributions sont séparées en trois parties. Premièrement, cette thèse aborde
une question technique : la détection de variants de nombre de copies (CNV) dans
le génome de patients atteints de myélome multiple. Bien que réalisée usuellement
à l’aide d’une technique existante (CGH), la question de la faisabilité de ce genre
d’analyse à l’aide de techniques dite de next-generation sequencing a déjà été abordée.
Ici, nous examinons le processus de détection de CNVs sur base de la séquence
complète d’exome de la cellule tumorale et en l’absence de la séquence d’exome de
celulles germinales. Nous montrons que les comparaisons habituellement utilisées
pour déterminer la validité d’un profil de CNVs sont insuffisantes, et nous proposons
une nouvelle méthode de comparaison de profils de CNVs. Sur base de cette méthode,
nous montrons qu’il est possible de détecter des CNVs chez les patients atteints de
myélome multiple sur base de la séquence d’exome et en l’absence de tissu sain
correspondant, en utilisant un pool d’échantillons sains comme contrôle.

Ensuite, l’aspect diagnostic du cancer du sein est abordé, dans le cadre du développe-
ment d’un outil de diagnostic non-invasif du cancer du sein basé sur une prise
de sang. En partant d’une cohorte de 378 femmes, nous avons démontré que les
niveaux de microARNs circulants peuvent être utilisés comme biomarqueurs pour
le diagnostic du cancer du sein. Nous avons conçu un outil diagnostic sur base
de 8 microARNS, dont les niveaux sont combinés à l’aide de l’algorithme Random
Forests. En outre, la spécificité de notre outil diagnostic est évaluée sur des patients
en rémission, des tumeurs gynécologiques, et des cancers du sein métastatiques.

Dans la dernière partie de cette thèse, l’utilisation de données de séquençage
ARN brin-spécifique sur une cohorte de 23 patientes atteintes de cancer du sein
ER+/HER2- a permis de mettre en évidence une série de résultats relatifs au rôle
potentiel des longs ARN non-codants antisens et à leur perturbation dans la tumeur.
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Trois méthodes différentes d’extraction de gènes sont présentées. Pour chacune de
ces méthodes, la liste de gènes correspondant est passée en revue, et sa pertinence
dans le cadre d’une analyse de survie est évaluée sur une cohorte externe d’un millier
de patientes atteinte de cancer du sein.
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1

Introduction

„I would rather have questions that can’t be
answered than answers that can’t be questioned.

— Richard Feynman

Cancer

Hallmarks of cancer

Cancers are an ensemble of diseases involving cellular abnormalities. Among those
abnormalities, ten are considered to form the hallmarks of cancer (see. Fig. 1.1).
These hallmarks include sustaining proliferative signaling, evading growth suppres-
sors, resisting cell death, enabling replicative immortality, inflammation, inducing
angiogenesis, genomic instability, reprogramming the energy metabolism, evading
immune destruction, and activating invasion and metastasis [1].

Fig. 1.1.: The hallmarks of cancer. (Hanahan & Weinberg [1])
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Oncogenesis

These ten traits are an emergent property of both inflammation and the genomic
instability of the cancer cell. Cancer is indeed a genetic disease and the genetic
causes of cancer can either be inherited or acquired during one’s lifetime.

Even though the abnormally large number of genetic mutations constitutes a charac-
teristic of cancer cells, not all mutations play a role in the cancer progression. Most
mutations do not even change the protein product of the mutated gene. Among
the non-synonymous mutations, 95% are single-base substitutions. It should be
noted that the average number of non-synonymous mutations varies greatly between
tumor types (see Fig. 1.2) [2].

Several particular gene types play a role in cancer: (proto-)oncogenes, tumor
suppressor genes, DNA repair genes.

Proto-oncogenes are genes which, at their normal state, do not cause cancers, but
whose tumorigenic potential can be activated by retroviruses or by genetic alterations
(mutations, amplifications in gene copy number, translocations) [3].
For example, HER2/neu is a proto-oncogene which codes for a cell surface receptor
and whose over-expression plays a role in approximately 15-20% of breast cancers
[4].

Tumor suppressor genes are involved in the repression of cancerous growth. They
must be inactivated or lost for cancer to develop. Usually, a mutation, a loss, or an
epigenetic modification of both alleles of the tumor suppressor gene is required for
the cancer to progress.
For instance, TP53 is a tumor suppressor gene whose protein, p53, plays a role in
apoptosis, cell cycle arrest and senescence. It is involved in more than 50% of human
cancers [5].

Both oncogenes and tumor suppressor genes rarely act alone in the tumorigenesis
process. This process is indeed multistep. Tumor development arises from the
natural selection of cells, where each additional mutation in an oncogene or a tumor
suppressor gene will grant greater proliferation and selective advantage (see Fig.
1.3).

DNA repair genes, whose function is to correct errors in DNA during the cell division
process, play an important role in preventing cancer progression. When their protein
product is altered or absent, because of mutations or deletions or other type of
alterations, the mutation rate is increased and oncogenesis is accelerated.

2 Chapter 1 Introduction



Fig. 1.2.: Median number of somatic non-synonymous mutations per tumor in representative
human cancers. (Vogelstein et al. [2])

For example, BRCA1 and BRCA2 are DNA repair genes which are involved in most
cases of hereditary breast and ovarian cancers [7].

The genetic mutations which play a role in cancers are called "driver mutations",
as opposed to "passenger mutations", whose effect on the tumor cell survival and
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Fig. 1.3.: The multistep tumorigenic process is the consequence of the accumulation of
driver mutations. Branching evolution results in competing subclones with diverse effects in
terms of disease progression and severity. (Yates & Campbell [6])

proliferation is considered to be non-existent. Passenger mutations arise during the
evolution of the cancer cell because of the deficiency in the DNA repair mechanisms
[2].

Most genetic mutations related to cancer appear at low frequencies, but they tend
to be linked to a small number of pathways, which play a key role in the tumor
cell’s survival. This low frequency both in the affected genes and the mutations
makes it harder to look for statistically significant evidence linking genes and genetic
mutations to cancer. Moreover, cancers can rarely be explained by a single mutation
or a single affected gene. Genes act together, and inactivating mutations in different
genes may show a phenotypic effect only when combined with several other protein-
altering mutations [6].

The genetic mutations involved in cancer are not limited to single nucleotide substi-
tutions. Large chromosomal aberrations also play a key role in some cancer types
(see 1.2.1), as well as epigenetic modifications.

Epidemiology

More than 14 million new cases of cancer are diagnosed worldwide each year,
with lung and breast cancers being the most frequent cancers in men and women
respectively. In Belgium, more than 65000 cases of cancer were diagnosed in 2013
and this number is expected to rise to 78000 by 2025 [8, 9].
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Cancer remains a leading cause of death worldwide, with more than 8 million deaths
each year. In Belgium, more than 26 000 deaths were caused by cancer in 2012 [9,
10].

In Belgium, breast cancer is the most frequent cancer type in females, accounting
for approximately 35% of all cancers, with more than 10000 cases diagnosed each
year. It is also the first cause of cancer death in females (approximately 20% of
all cancer deaths). The mean age at the diagnosis for breast cancer in Belgium is
approximately 65. In the USA, it is approximately 68. Younger women have a lower
incidence than older women [9, 11].

Multiple myeloma accounts for approximately 15% of lymphatohematopoietic
cancers (LHC) and 2% of all cancers in the US. In Belgium, with more than 750
cases diagnosed each year, multiple myeloma represents approximately 1% of all
cancers. The median age at diagnosis for multiple myeloma is 71 and it rarely affects
people younger than 40. The median survival after diagnosis is approximately 3
years. Incidence increases with age, and it varies with ethnicity (higher prevalence
in African-Americans compared to European-Americans) [9, 12, 13].

Breast cancer

Breast cancer is a disease involving uncontrolled growth of breast cells. It usually
starts in the cells of the lobules or the ducts or, less frequently, in the stromal
tissues.

Although all breast cancers are caused by genetic abnormalities, only 5-10% of
breast cancers have a hereditary component and approximately 15% of breast cancer
patients have a first degree parent (mother, sister, daughter) with breast cancer [14,
15].

Most hereditary breast cancers are associated with heterogeneous mutations in genes
BRCA1 and BRCA2, which are DNA repair genes. When there is a mutation in the
BRCA1 gene, the cumulated risk of breast cancer at age 70 is 65%. If a germline
mutation affects the BRCA2 gene, the risk at the same age is 45% [7, 16].

Several other genes playing a role in the DNA repair process are also associated with
hereditary breast cancers: BRIP1, RAD51, CHEK2, ATM, PALB2, TP53, STK11, CDH1
[7, 17].
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Other risk factors, such as exposure to hormones (estrogen) and environmental
factors (alcohol consumption, smoking, lack of exercise) have also been associated
with breast cancer [3].

Several subtypes of breast cancer can be defined based on histopathology, molecular
pathology, and transcriptomics.

Histologically, the vast majority of breast cancers can be divided into 3 subtypes:
invasive ductal cancers (IDC or NOS for not otherwise specified), accounting for
approximately 75% of cases; invasive lobular cancers (ILC), accounting for approxi-
mately 10% of cases; and rare subtypes (mixed IDC/ILC, medullary breast cancers,
etc.).

The IDC and ILC subtype can be additionally subclassified through the use of molec-
ular pathology into the following subtypes: hormone receptor positive tumors
(ER-positive and PR-positive), based on the expression of the the estrogen receptor
alpha and the progesterone receptor; HER2-amplified tumors, where the HER2/neu
gene is amplified and over-expressed; and triple-negative breast cancer (TNBC),
which express neither ER, PR, nor HER2 [3].

Alternatively, breast cancers can be classified into four different groups, based on
the analysis of the expression of genes. These four subtypes (Luminal A, Luminal
B, Basal-like, HER2/ERBB2+) overlap with the histopathological and molecular
pathology subclassifications (see. Table 1.1) [18–20].

Multiple Myeloma

Multiple myeloma is a cancerous disease characterized by an unrestrained prolifera-
tion of plasmocytes (clonal plasma cells in the bone marrow). It is associated with
high levels of serum paraprotein. All MM tumors have numeric and/or structural
chromosome abnormalities [21].

Multiple myeloma is almost always predated by a pre-cancerous condition called
MGUS (monoclonal gammopathy of undetermined significance) which is defined by
conditions similar but less serious than multiple myeloma, namely a level of serum
paraprotein lower than 30g/L and the presence of less than 10% plasma cells in the
bone marrow. MGUS is present in 1% of adults older than 25 and the probability for
an MGUS to evolve into multiple myeloma is approximately 1%/year [22].
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Luminal A
ER+

HER2-

PR+

Ki67 low (< 14%)

Luminal B
ER+

HER2-
Ki67 high (Ø 14%)

ER+

HER2+
No Ki67 specificity

Basal-like
ER-

PR-

HER2-

No Ki67 specificity

HER2/ERBB2+
HER2+

ER-

PR-

No Ki67 specificity

Tab. 1.1.: Gene expression based subtypes compared with molecular pathology based
classification of breast cancer.

Most MM and MGUS tumors present (among other affected genes) a dysregulated
and/or over-expression of CCN D1, CCN D2, or CCN D3 which can be caused by
different chromosomal abnormalities:

• Approximately half of multiple myeloma patients share a hyperdiploid kary-
otype (49 or more chromosomes, with gains of several of chromosomes 3, 5,
7, 9, 11, 15, 19, 21). Patients with a hyperdiploidy have a better prognosis,
but said prognosis aggravates greatly if they acquire a specific chromosomal
alteration (loss of chromosome 13, gain in the long arm of chromosome 1).
CCN D1 is dysregulated in a majority of hyperdiploid tumors.

• The other half of patients is split into hypodyploid, pseudodiploid, near-diploid
or tetraploid karyotypes. Hypodiploid karyotypes are associated with a short-
ened survival and lower likelihood of response to therapy [21, 23, 24].

In addition to chromosomal gains and losses, multiple myeloma presents frequent
aberrations such as large translocations, copy number alterations and point muta-
tions.

The (complete or partial) monosomy of chromosome 13, which is the most common
alteration in multiple myeloma, occurs in approximately 60% of tumors, 72% of
non-hyperdiploid tumors and 37% of hyper-diploid multiple myeloma. It involves
the deletion of the RB tumor-suppressor gene.
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The immunoglobulin heavy-chain (IgH) translocation, which is present in approxi-
mately 40% of patients (most non-hyperdiploid tumors), is a translocation involving
the IgH, located on chromosome 14, and different oncogenes which act as chromo-
somal partners (see Tab. 1.2).

Partner Oncogenes Location Prevalence Prognosis

MMSET, FGFR3 4p16 15% Unfavorable

CCN D3 6p21 3% Favorable/neutral

CCN D1 11q13 15% Favorable/neutral

c-MAF 16q23 5% Unfavorable

MAFB 20q11 2% Unfavorable

Tab. 1.2.: Partner oncogenes of the IgH translocation. (Bergsagel & Kuehl [21])

The 1p monosomy, which is present in approximately 30% of patients, can span
variable lengths, but it usually includes cytobands 1p32 and 1p21, where P53-
interacting genes CDKN2C and CDC14A are respectively located [25].

One should also mention the 17p13 deletion, associated with poor prognosis, which is
present in approximately 10% of MM patients and also in chronic lymphoid leukemia
and chronic myeloid leukemia, and the partial or complete 1q amplification which is
also associated with an unfavorable prognosis [26, 27].

Hyperdiploidy and the IgH translocation are usually already present at the early
stage of the disease, while some other recurrent chromosomal alterations appear only
later during the disease evolution (13p and 1p monosomy, 1q, 16q, Xq duplications)
[21].

Tumor suppressor genes TP53, FAM46C, UTX, BIRC2, BIRC3 can be affected by
deletions, while oncogenes such as MYC, HGF, MCL1, IL6R can be affected by
amplifications.

The following 10 genes are frequently affected by point mutations: NRAS, KRAS,
TP53, CCND1, FAM46C, DIS3, PNRC1, ALOX12B, HLA-A, MAGED1 [28].

Screening and diagnosis

Breast cancer screening is usually done through mammography. European recom-
mendations advise to carry out a screening mammography every 2 years for women
between 50 ans 69 years old [29].
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The sensitivity of screening mammography decreases significantly with increasing
breast density and in younger women with dense breasts [30].

A large retrospective study encompassing more than 2.5 million screening mammo-
graphies, between 1996 and 2002, showed a mean positive predictive value of 4.8%
for this test [31].

Moreover, mammography performance is operator-dependent and it exposes patients
to ionizing radiations, which can be an additional risk factor for breast cancer.
Moreover, since the advent of screening mammography, the detection rate of large
tumors fell while it rose for smaller tumors. However, women were more likely to
have breast cancer that was overdiagnosed than to have earlier detection of a tumor
that was destined to become large. [32–34].

The most common symptoms of multiple myeloma are bone problems (pains,
fractures), low blood cell counts, high blood levels of calcium, renal insufficiency
[13, 35, 36].

When these symptoms are present, a diagnosis can be performed thanks to a bone
marrow biopsy, complete blood cell count, serum protein electrophoresis, immunofix-
ation, quantitation of immunoglobulins and measurement of free light chains [37].
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Copy Number Variations

Copy number variations (CNVs) constitute variations of the human genome involving
gains or losses of at least 50 basepairs to hundreds of kilobases of genomic DNA
[38, 39]. Duplications of whole chromosomes were first described in the late 1950s
thanks to karyotypes performed on patients suffering from Down syndrome and
Klinefelter syndrome [40, 41].

CNVs can be present in phenotypically normal individuals, and large duplications
or deletions can encompass genes without involving early onset, highly penetrant
genomic disorders. On the other hand, the presence of a CNV can be associated
with severe effects such as embryonic lethality. In the same way as single nucleotide
polymorphisms, some CNVs can be population-private [39, 42].

A recent meta-analysis combining lists of benign CNVs present in various populations
from 55 different studies has shown that 4.8–9.5% of the normal human genome
can contribute to CNVs although, on average, the normal human genome has gains
spanning only 0.35% of the genome and losses covering less than 0.1%. Moreover,
benign CNVs are as rare as they are diverse, as a specific genomic region is affected by
a CNV in only 2.6-4.3% of all individuals in the meta-analysis. However, individuals
from the same ethnicity tend to share a higher number of CNVs, as these are often
population-private. A summary of this human CNV map is presented in Table 1.3
[39, 43].

CNVs are unevenly distributed in the genome and along the chromosomes, as the
pericentromeric and subtelomeric regions have a higher rate of CNVs. Moreover,
large parts of chromosomes seem to never harbor benign CNVs, as the percentage
of a chromosome that is prone to a CNV ranges from 1.1% to 16.4% for gains and
from 4.3% to 19.2% for losses. Chromosomes 22, Y, 16, 9, 15 have the highest rate
of gains while chromosomes 3 and 18 have the lowest. Chromosomes 19, 22 and
Y have the highest rate of losses while chromosomes 5, 8 and 18 have the lowest
[39].

Duplications or deletions of parts of chromosomes have been known to play a key
role or to be directly responsible for several pathologies such as spinal muscular
atrophy, Charcot-Marie tooth disease, DiGeorge syndrome; although one should
remain cautious, as some of the CNVs associated with several genetic disorders show
incomplete penetrance [42].
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Inclusive count Stringent count
Parts of the genome
susceptible to CNVs (%)

9.5 4.8

Parts of the genome
susceptible to CNVs (Mb)

273 136.6

Median CNV length (bp) 981 1237

Mean CNV length (bp) 11362 11647

Number of identified CNV regions 24032 11732

Number of identified gain regions 3132 1169

Number of identified loss regions 23438 11530

Mean prevalence of a CNV (% population) 4.3 2.6

Tab. 1.3.: Summary of the copy number variation map of the human genome, based on a
meta-analysis of 55 studies encompassing 2647 individuals. The inclusive threshold counts
CNVs present in at least two subjects and one study for each variant. The stringent threshold
counts CNVs present in at least two subjects and two studies. Some of the CNVs are counted
both in the gains and in the losses as the same genomic region can show both patterns in
different samples. (Zarrei et al. [39])

Role in cancer

In 2010, a large study using SNP arrays on more than 3000 cancer samples coming
from 26 different cancer types showed that, on average, each cancer sample harbored
24 somatic gains and 18 losses. Regions of segmental duplication showed an enriched
rate of CNVs. On average, gains spanned 17% of the cancer genome and losses
covered 16%. These values differ strinkingly from the average 0.35% and 0.1% of
the normal genome contributions to gains and losses, highlighting the key role of
CNVs in cancer [43].

Interestingly, most somatic CNVs are either very small, or span exactly one chromo-
some arm or one whole chrosome (see. Fig 1.4), resulting in approximately 25% of
the cancer genome affected by arm-level CNVs and 10% by very small ones (with 2%
belonging to both categories). The most frequent very small somatic CNVs involve
the amplification of the MYC gene and the deletion of CDKN2A/B, both present in
approximately 14% of all cancer samples. Arm-level somatic CNVs are present in
15-29% of all cancer samples, depending on the affected chromosome.

Germline CNVs can also play a role in cancer, as some of the major cancer genes can
be included in rare, non-polymorphic germline CNVs. Although less studied than
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Fig. 1.4.: Distribution of somatic CNV lengths across 3131 cancer samples. The authors use
the SCNA (somatic copy number alteration) notation. (Beroukhim et al. [43])

somatic CNVs, a few recent publications have listed germline CNVs as associated
with susceptibilities for some forms of cancer [44, 45].

As breast cancer can be associated with the over-expression of several genes (see
1.1.4), it is logical to look for CNVs as potential causes of said over-expression.
An array CGH survey of 89 breast tumors has shown that several recurrent CNVs
were present. The most frequent alterations are gains on 1q (35%), 8q (35%), 11q
(26%), and 16p (14%), and losses on 4q (58%), 5q (54%), 6q (43%), 8p (48%),
and 14q (48%) [46].
A more recent study on 773 breast tumors showed that the regions containing
PIK3CA, HER1/EGFR, FOXA1, and HER2/ERBB2 were often amplified and the regions
containing MLL3, PTEN, RB1 and MAP2K4 were often deleted. Moreover, many of
the CNVs outlined in this study, particularly some arm-length ones, correlated with
the gene expression-based breast cancer classification; as the gain of 10p and the
loss of 5q in Basal-like breast cancers, and the gain of 1q and/or the loss of 16q in
Luminal breast cancers [47].

In multiple myeloma, other than the IgH translocation, several CNVs are also
present:

• the monosomy of chr 13 or of 13q is the most frequent CNV in multiple
myeloma and it affects approximately 45-50% of patients

• the 17p or 17p13 loss, which is also present in chronic lymphoid leukemia and
chronic myeloid leukemia patients, is common in approximately 8-10% of MM
patients

• the 1p loss is present in approximately 30% of patients
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• the 1q gain is present in approximately 33-35% of patients
• the 5q gain is present in approximately 50% of patients
• the 12p loss is is present in approximately 10% of patients [26, 48–50]

Detection

Over the years, the detection of CNVs has been done with various methods, however
no single technique was able to accurately detect all CNV classes, ranging from very
small to very large, and including CNVs located in hard to probe regions such as
segmental duplications. Table 1.4 shows the differences between existing methods.

Fluorescence in-situ hybridization (FISH) is a visual technique used to detect chromo-
somal alterations using fluorescent probes. Even if it can only observe a single locus
at a time, it is often the only available method to detect certain forms of structural
variations along the genome, and it is thus still used routinely.

Several techniques allowing to detect CNVs at a single locus or at a small number of
loci, with varying throughput and resolution, should also be mentionned (Southern
Blot, PFGE, qPCR, MAPH, MLPA, PRT) [39, 51].

Fiber
FISH

Southern
Blot

PFGE QPCR MAPH MLPA PRT SNP ar-
ray

Array
CGH

NGS

Sample Cells 2–5 µg
DNA

2–5 µg
DNA

5–10 ng
DNA

0.5–1 µg
DNA

100–200
ng DNA

10–20
ng DNA

0.5–1 µg
DNA

0.5–1 µg
DNA

1–2 µg
DNA

Loci Single Single Single Single >40 >40 Single >2 mil-
lion

>2 mil-
lion

Genome-
wide

Throughput Low Low Low High High High High High High Moderate

Minimum resolution >1 kb >1 kb 0.5–1 kb 100 bp 100 bp 100 bp 100 bp 5–10 kb 5–10 kb >1 kb

Cost per sample Low Low Low Low Low Low Low Moderate Moderate High

Time to result >24 h 2–3 days 2 days 4 h >24 h >24 h 4 h >24 h >24 h 2–3 days

Labor requirement High High High Low Low Low Low Moderate Moderate High

Tab. 1.4.: Existing methods to detect CNVs (Cantsilieris et al. [51])

Array CGH, which was introduced in 1997, is a microarray-based extension of
comparative genomic hybridization (CGH). CGH makes use of the hybridization of a
reference DNA in addition to the tested sample, and the fluorescence ratio between
both samples is normalized and used to infer the copy-number of the test sample.
Several different molecules can be used on the array (genomic DNA clones, cDNA,
PCR products or oligonucleotides).

SNP chips or SNP microarrays were originally designed with SNP genotyping in
mind, so they don’t work by comparing hybridization signals, like CGH. Instead, the
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hybridization intensities from a single sample are compared to a set of reference
values to extract the copy-number information. Due to the fact that SNP arrays
also yield genotype information, it gives an added value when assessing deletions:
genotype alone cannot allow the detection of deletions in a single individual (as
hemizygosity could be miscalled as homozygosity of the remaining allele). But
if a parent-offspring trio is analyzed, regions of losses of heterozygocity can be
discovered, yielding additional information regarding potentially deleted regions
[51, 52].

Several NGS approaches exist to detect CNVs from whole genome samples:

• the most straighforward one uses the depth of coverage (DOC) or reads depth
(the number of sequencing reads mapping at a specified location), with a lower
than average DOC being indicative of a loss and a higher than average DOC
being indicative of a gain. The DOC is usually computed for sliding windows
of varying sizes. The main assumption behind this method is that the coverage
should be uniform along the genome, however this is not always exactly the
case because of sequencing biases like GC-content.

• paired-end based methods require the use of paired-end sequencing libraries.
The idea is that two paired sequencing reads mapping to a copy-neutral region
of the genome are separated from each other by a specific distance called the
insert size. If paired reads map to the genome with an unexpected insert size
between them, this could be indicative of a gain or a loss. This method can also
detect translocations, when paired reads map to different chromosomes. The
insert size limits the size of CNVs which can be detected with this approach.

• Ratio based methods use a process similar to aCGH, by computing the ratio
of mapped read counts between a test sample and a reference sample along
the genome (see Fig 1.5). The idea underlying this approach is that it is an
evolution of the depth of coverage method, where the use of a reference sample
prepared the same way as the test sample should mitigate the sequencing biases
[53].

Most methodologies used to detect CNVs from whole genome data have been adapted
or at least tested on exome data. The ratio of reads depths analysis seems to be the
most robust, but it requires access to a matched reference sample sequenced with
the exact same protocol as the test sample, to account for the variability in capture
efficiency accross exons [55].
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Fig. 1.5.: The read counts ratio approach to CNV detection with whole genome data. (Xie &
Tammi [54])

The size distribution of detected CNVs varies, based on the detection method.
Whole exome and whole genome sequencing yield smaller variants than array-based
methods and are biased towards the detection of deletions. CGH and SNP arrays
have a more limited resolution capacity [39].

Comparing CNV profiles

Since different techniques have been developed to detect CNVs, the assessment of
said techniques accuracy is an important part of lots of studies. The comparison of
CNV profiles is thus critical, since a comparison with an established, well character-
ized profile obtained with an older technique is often used to validate a new CNV
detection method [56].
Moreover, the comparison of profiles can also be useful to indicate potential biases
towards specific CNVs (small vs. large ones, gains vs. losses, GC-rich vs. GC-poor,
etc.)

Some studies limit themselves to counting the overlap (i.e. the copy-number events
in common) between the reference profile and the assessed profile [56].
Such overlaps can have different definitions, as different studies use different per-
centage thresholds to consider a CNV event to be present in two profiles [57].
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Usually, studies only report the rates derived from the confusion matrix (TPR, FPR,
TNR, FNR, see. 1.4.2), and in some cases the amplification/deletion ratios and the
CNV size distribution.

One of the most comprehensive comparison study computed TPR and FPR values for
different CNV lengths and different coverages and copy-numbers. It also computed
the F-score defined as F = 2 P R

P +R , where P is the precision or positive predictive value
(i.e. P = T P

T P +F P , representing the percent of the detected CNV which overlaps with
the reference profile) and R is the recall or sensitivity (i.e. R = T P

T P +F N , representing
the percent of the reference profile CNV that overlaps with the detected CNV) [58].

Fig. 1.6.: Two CNV profiles of the same chromosome from the same biological sample,
analyzed with two different references. A slight change in log-ratio can have an effect on the
presence (in red) or absence (in yellow) of a CNV at a specified locus. (Wenric et al. [59])

However, all these comparisons making use of confusion matrix derived metrics have
to consider CNV events as binary variables (or as successions of binary variables
along sliding windows), i.e. CNVs are either present, or absent, based on the log-ratio
value at a specified locus and the log-ratio threshold used to call a CNV. Given said
assumptions, slight differences of log-ratios between 2 samples can have different
consequences if these differences happen below, around, or above the predefined
threshold (see Fig. 1.6).
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microRNAs

MicroRNAs were first discovered in 1993, when a team led by Ambros discovered that
a gene deemed essential for C. elegans (lin-4) did not code for a protein but produced
short transcripts (later named miRNAs) whose sequences were complementary to the
mRNA sequence of another gene (lin-14), suggesting a regulation through antisense
RNA-RNA interaction [60].

The first human miRNA (let-7) was identified in 2001 [61].

miRNAs can be defined as short single-stranded RNA molecules of 20-23 nucleotides
which do not code for proteins and are only expressed in eukaryote cells. Their
biogenesis is shown in Fig. 1.7. They play a key role in several biological processes
where they regulate gene expression at the post-transcriptional stage, by binding to
the mRNA, through complementary sequences, and preventing its translation into a
protein. miRNA-binding sites are generally positioned in the 3’ untranslated region
(UTR) of mRNAs. Due to the short binding sequence, one miRNA can target multiple
genes, and one gene can be targeted by multiple miRNAs. The biological processess
affected by miRNA regulation range from proliferation, differentiation, apoptosis,
cell cycle regulation to cell death [62, 63].

Fig. 1.7.: The key steps of miRNA biogenesis involve several genes and proteins (Drosha,
Dicer, AGO1). (Jeffrey [64])

As of today, more than 2500 human miRNAs have been identified. More than 60%
of all human protein-coding genes harbor one or several conserved miRNA-binding
sites, and, since several non-conserved sites are also present, it is safe to say that
a large majority of human protein-coding genes may be regulated by miRNAs [63,
65].
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Several miRNAs share parts of their sequence (notably in binding regions) and are
considered to be part of the same family. It is common that miRNAs of a family
target the same mRNAs and share functional consequences. Studies have shown
that, as miRNAs from a same family share a functional role, low levels of one miRNA
could be balanced by higher levels of another miRNA from the same family [66].

miRNAs from the same family are indicated by lettered suffixes (e.g. mir-34a and
mir-34b). Each genomic locus produces two mature miRNAs, coming from both
strands of the precursor; they are indicated by an additionnal sufix (e.g. mir-125a-3p
and mir-125a-5p). Usually, most of the total expression comes from only one of the
two mature miRNAs (96-99% on average). As different miRNAs can be produced
from close genomic loci, they are sometimes transcribed together, in the form of
clusters [63].

microRNAs in cancer

Altered levels of miRNAs in cancer were first reported in a 2002 study on chronic
lymphocytic leukemia, quickly followed by other tumor types. Globally, miRNAs are
less expressed in tumors, compared to normal tissue [67, 68].

Different processes can explain the varying levels of miRNAs in cancer:

• miRNA genes are often located in regions of chromosomal instability (gains,
losses, translocations). The genes for the mir-15a/16-1 cluster are often deleted
in chronic B-cell lymphocytic leukemia. The genes for the mir-17-92 cluster
are often amplified in lymphoma and translocated in T-cell acute lymphoblastic
leukemia. A study on 227 samples of human breast cancers, ovarian cancers,
and melanoma showed that a high proportion of genomic loci encompassing
miRNA genes were included in copy number variation regions [69].

• Some miRNAs see their expression regulated by transcription factors from
tumor-suppressor or oncogenes pathways. mir-34a is regulated by TP53, mir-
21 is regulated by RAS, and the mir-17-92 cluster is regulated by MYC.

• miRNAs are also subject to phenomenons of epigenetic modulation such as
hyper- or hypomethylation: different studies have shown that mir-223 is
silenced through CpG methylation or that other miRNAs can have elevated
expression levels because of DNA demethylation and histone deacetylase
inhibition. In several tumor types, levels of mir-34a/b/c can be lowered
because of CpG methylation [70, 71].
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• Several parts of the miRNA biogenesis pathway can also be altered in tumors
through altered expression or mutations. For example, a study has shown
that in lung cancer patients, the levels of Dicer mRNA and let-7 miRNA were
correlated and that low levels of both were associated with reduced survival
[72].

Since miRNAs regulate gene expression, their dysregulation can have an effect on
tumorigenesis, in the same way as tumor-suppressor genes or oncogenes (see Fig.
1.8) [66].

Fig. 1.8.: Regulation of tumorigenesis by miRNAs. An upregulation of oncogenic miRNAs
can down-regulate the expression of tumor-suppressor genes, while a downregulation of
tumor-suppressor miRNAs can up-regulate the expression of oncogenes. Moreover, mutations
can also affect the regulating process in which miRNAs are involved. (Kong et al. [73])

Lots of studies have shown patterns of miRNAs dysregulation in several cancers,
although one should remain cautious, as an up- or down-regulation of a certain
miRNA is not necessarily indicative of a causative role in tumorigenesis. Table 1.5
shows some of the most commonly altered miRNAs in human cancers.
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miRNA Dysregulation Cancer type
let-7/98
cluster

down
CLL, lymphoma, gastric, lung, prostate,
breast, ovarian, colon, leiomyoma, melanoma

mir-15a/16-1
cluster

down
CLL, lymphoma, multiple myeloma,
pituitary adenoma, prostate, pancreatic

mir-17-92
cluster

up
Lymphoma, multiple myeloma, lung,
colon, medulloblastoma, breast, prostate

mir-21 up
Lymphoma, breast, lung, prostate, gastric,
cervical, head and neck, colorectal, glioblastoma

mir-26a
down

Lymphoma, hepatocellular carcinoma,
thyroid carcinoma

up Glioblastoma

mir-34a/b/c down
CLL , lymphoma, pancreatic, colon,
neuroblastoma, glioblastoma, breast

mir-155 up
Lymphoma (Burkitt’s, Hodgkin’s, non-Hodgkin’s),
CLL, breast, lung, colon, pancreatic

mir-141/200a
cluster

down
Breast, renal clear cell carcinoma,
gastric, bladder

up/down Ovarian

mir-205
down Prostate, bladder, breast, esophageal
up Ovarian

mir-206 down Rhabdomyosarcoma, breast

mir-9
down Medulloblastoma, ovarian
up/down Breast

Tab. 1.5.: Commonly altered miRNAs in human cancer. (Farazi et al. [66] and Peurala et al.
[74])

Other studies have shown that miRNAs could be associated with metastasis (miR-
10b, miR-9, miR-31 and miR-335 in breast cancer) or with tumor aggressiveness
(miR-210 in breast cancer) [75, 76].

As mentioned earlier, a dysregulation of miRNA levels in tumor samples does not
necessarily indicate an active, functional role of said miRNA in the tumorigenic
process. However, several studies have indicated the biological role of some miRNAs
in breast cancer:

• mir-21, which is over-expressed in most tumors (cf. Table 1.5), has several
oncogenes and tumor-suppressor genes as putative targets (PTEN, SKI, RAB6A,
RAB6C, RHOB, TGFBR2, RASA1, BCL2, PDCD4), and it has been found to be
antiapoptotic and to favor cell and tumor growth [73, 77–79].
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• mir-155, which is over-expressed in several cancer types (cf. Table 1.5) pro-
motes angiogenesis by targeting the VHL tumor-suppressor. Moreover, BRCA1,
which is a tumor-suppressor gene involved in breast cancer (cf. 1.1.2), epige-
netically represses miR-155 [80, 81].

• The mir-17-92 cluster is involved in a feedback system with the E2F proteins (a
family of transcription factors which are critical regulators of cell proliferation).
An overexpression of this miR cluster, which happens in several cancer types (cf.
Table 1.5), disrupts the feedback loop to promote cell proliferation. Moreover,
mir-19 inhibits PTEN, leading to the activation of the AKT signalling pathway
and promoting cancer-cell survival [70, 73].

• mir-10b, which is over-expressed in breast cancer stem cells, targets PTEN
which is an important regulator of the PI3K/AKT pathway involved in metasta-
sis, cell survival, and self-renewal. Moreover, an over-expression of mir-10b in
metastatic breast cancer cells up-regulates c-Jun (a transcription factor playing
a key role in stimulation of cell proliferation and tumor progression) via the
down-regulation of HOXD10 and NF1 (two proteins implicated in cytoskeletal
dynamics) [82, 83].

• the mir-15/16 cluster: the over-expression of mir-16 inhibits progestin-induced
breast tumor growth [84].

• the let-7 family targets several genes such as KRAS, HRAS, HMGA2, which are
implicated in cell growth, differentiation, and survival. let-7b inhibits breast
cancer cell motility through a down-regulation of several genes of the actin
cytoskeleton pathway [73, 85].

• mir-34a, which is part of the mir-34 family, has its expression regulated by
TP53 and is down-regulated in tumors (cf. supra). This microRNA inhibits
osteoclastogenesis and bone resorption through a down-regulation of Tgif2. It
inhibits bone metastasis formation in mouse models of breast cancer [71, 86].

• mir-125b, which is under-expressed in metastatic breast cancer, targets the
HER2/neu oncogene [87].

microRNAs as diagnostic biomarkers

Circulating RNA molecules were already observed in 1999, in the plasma of cancer
patients [88].
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In 2008, two different studies showed that it was possible to detect circulating
miRNAs: placental miRNA in maternal plasma and tumoral miRNAs in the serum
of patients suffering of diffuse large B-cell lymphoma. Since the profile of serum
miRNAs was different between patients and controls, this discovery paved the way
to the use of circulating miRNAs as biomarkers. Later studies showed that miRNAs
could also be detected in other fluids (saliva, urine, breast milk, tears, amniotic fluid,
CSF, pleural fluid) [89–91].

Circulating miRNAs, which are released in the peripheral bloodstream by most cells,
both in normal and pathological conditions, remain stable despite RNase because
they are protected from degradation by different structures:

• Argonaute-family (AGO) proteins
• Exosomes: extracellular vesicles of 40-100 nm formed through an invagination

of the plasma membrane
• Other microvesicles larger than exosomes (100-1000 nm)
• High-density lipoproteins (HDL)

90-95% of circulating miRNAs are associated with AGO proteins [91].

Several methods can be used to determine profiles of miRNAs: RT-qPCR, microarrays,
and sequencing. Microarrays yield fold-changes of miRNA levels between samples,
while sequencing methods derive the levels of miRNA from the sequencing read
counts [66].

MicroRNA RT-qPCR MicroRNA microarray Small RNA-seq
Principle PCR amplification Hybridization Sequencing
Throughput Medium to high High Ultra high
Costs Economic Economic Comparatively high
Required amount of RNA 10 ng–700 ng 100 ng–10,000 ng 250 ng–10,000 ng
Data generation 1 day Up to more than 2 days Up to more than 1 week
Data information Assumption based; dependent

on the number and nature of
targeted transcripts

Assumption based; dependent on the
number and nature of targeted tran-
scripts

Assumption free, de novo iden-
tification of transcripts within
the small RNA transcriptome

Data analysis duration Short Moderate Long
Preferential field of appli-
cation

Relative and absolute quantifi-
cation

Relative and absolute quantification
of miRNA regulation

De novo identification of small
RNAs, simultaneous relative
quantification of different small
RNA species

Common normalization
strategies

Invariant-based (e.g., stable ref-
erence small non-coding RNAs)

Quantile Scaling to library or sub-library
(e.g., miRNA) size

Plate normalizing factor LOESS Quantile
Global mean expression Variance stabilization Trimmed

Invariant-based
Scaling (e.g., Z-score, mean, median,
75th percentile)
Personalized logistic regression
model

Tab. 1.6.: Commonly used methods for the quantification of miRNAs. (Meyer et al. [92])
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In the RT-qPCR setting, normalization is necessary to account for reverse transcription
and PCR reaction efficiencies. Normalization can be based on predefined invariant
controls, reference miRNAs, or other RNA molecules. The selection of reference
miRNAs can be performed through different methods (stepwise elemination of the
least stable miRNA, pairwise correlation between miRNAs, linear mixed-effects
models). A 2009 study showed that the mean expression value of all expressed
miRNAs could also provide a stable normalization [92, 93].

Recent studies have shown that circulating miRNAs could be used as biomarkers in
a wide variety of diseases such as Alzheimer’s and other neurodegenerative diseases,
cardiovascular diseases, diabetes, obesity, endometriosis, inflammatory diseases,
and of course cancers (breast cancer, gastric cancer, colon cancer, hepatocellular
carcinoma, prostate cancer, acute myeloid leukemia, neck squamous cell carcinoma,
bladder cancer), but also when investigating non-pathological conditions such as
the response to exercise and diet [94–101].

As soon as more than one biomarker is involved, which is very often the case
with circulating miRNAs, appropriate techniques are needed to efficiently treat
the information. These methods are briefly described in the next section of this
chapter.

Starting in 2010, seveal studies have shown that breast cancer patients had a
dysregulated circulating miRNAs profile and that it was possible to use this difference
as the basis for diagnosis [102–109].
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Supervised learning

Machine learning describes an ensemble of methods whose goal is to learn a model
from data, i.e. to make accurate predictions based on past observations. The main
goals of machine learning methods are both the possibility to predict an output for
new data and to gain a better understanding of the role of the different variables.

Supervised learning refers to the specific machine learning tasks where the output
related to a set of labeled data is already known and used to predict the output
for unknown data. The problem is called a regression problem if the output of
interest is quantitative (i.e. a number), and a classification problem if the output
is qualitative (i.e. a category, like case or control). Fig. 1.9 shows an example
of a supervised classification problem. Supervised learning has been applied to
an extended range of topics ranging from insurance fraud detection to product
recommendation and medical diagnosis [110].

Fig. 1.9.: Example of a supervised classification problem. The variables used and the
classification algorithm are not shown. (Brink et al. [110])

Many different algorithms have been developed to tackle classification problems. One
can cite decision trees, k-nearest neighbors, naive bayes classifiers, support vector
machines, neural networks, deep learning. One should also note that regression
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algorithms can also be used in classification problems, by the use of threshold values
linking the numerical model output and the categories [111].

Random Forests

Decision trees are one of the most straightforward supervised classification algo-
rithm. A decision tree is made of nodes and branches, where nodes test one variable
of the dataset, and branches correspond to a specific value or range of values for
the variable. Each leaf node is labeled with a predicted class. The advantages of
decision trees are the very high interpretability of the model (one can directly see
which variables are used) and its non-parametric nature. Fig. 1.10 shows a simple
decision tree [112].
A non-parametric model does not make strong assumptions about the model or the
number of variables used. It is more flexible than parametric models, but it is more
prone to overfitting [113].

Fig. 1.10.: Example of a simple decision tree. We start at the root of the tree to classify a
sample of unknown output.

During the learning phase (i.e. building of the model), the tree is grown in a
top-down manner, starting with the most informative variable (i.e. the one which
splits the learning set into subsets having the most similar outputs). This process of
selecting the most informative variable and splitting the set of samples at a node into
2 subsets is repeated recursively until all samples at a node have the same output
(e.g. all cases or all controls) or until a specificied stopping criterion is met (e.g. a
minimum number of samples at each leaf node).
When the stopping criterion is met, each leaf node is labeled with the majority class
of the samples present in that node.

One of the pitfalls of decision trees is the high variance or the risk of overfitting.
Variance is the sensitivity of the model to small fluctuations in the learning set.
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Overfitting means that the model will take into account too much of the variability
of the samples of the learning set and thus instead of only modeling the "real"
relationship between the features of the learning set and the output variable, it also
encompasses some of the random noise present in the learning set [114].

One of the families of ensemble methods allows to reduce the variance of decision
trees by combining the predictions of several models. The variance of each model is
thus averaged on a large number of models and the global variance is lower than
the single variance of each model [111].

Different ensemble methods aiming to reduce variance have been developed: bag-
ging, random forests, extremely randomized trees, etc.

Another group of ensemble methods have also been developed: boosting type
algorithms, which are more suited to reduce bias [115].

Bagging (stands for bootstrap aggregating) starts with the initial learning set of
size n, generates m bootstrap samples (i.e. m learning sets of of size n’ obtained
by sampling with replacement from the initial learning set), builds m models on
each boostrap sample, and averages the prediction of each model. The resulting
ensemble model has a smaller variance than the original decision tree, and the
variance reduction effect is proportional to m [116].

Random forests can be defined as a combination of bagging and random variable
selection: the method starts with the initial learning set of size n, generates m boot-
strap samples and builds a tree on each bootstrap sample, but instead of building
each of these trees the classical way (i.e. by choosing the most informative variable
at each node), it is the most informative variable from a random subset (without
replacement) of all the variables which is selected at each node. While the direct
interpretations of the variables are lost since the global model is a "black box", it
is still possible to extract a ranking of all the variables from this global model. Fig.
1.11 shows an example of random forests [117].

Different parameters influence the global model: the number of trees, the number
of randomly selected variables at each node.
As the number of trees grows, the aggregated variance lowers but the computation
time grows. There is thus a trade-off based on the available computational power.
An empirical way of chosing an appropriate value for the number of trees to grow is
to observe the stabilization of the variable rankings as the number of trees grows
gradually (see Fig. 1.12) [62].
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Fig. 1.11.: Random forests used in prediction mode.

Fig. 1.12.: In this specific case, the variable ranking (based on the mean decrease in accuracy
and the mean decrease in Gini) stabilizes after approximately 1000 trees. (Frères et al. [62])
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For a dataset with d variables, a random subset of size K =
Ô

d constitutes a
good default number of randomly selected variables at each node, for classification
problems [118, 119].

Extremely randomized trees or extra-trees differ from random forests in that there
is no bootstrapping of the samples. The variable used at each node splitting is the
most informative one among a random subset of all variables, and the cut-off value
for this split is also selected randomly [119].

Evaluating predictions

As stated earlier, one of the goals of supervised learning is to make accurate predic-
tions. The systematic assessment of said accuracy requires different techniques.

A straightforward and ideal evaluation protocol would involve the availability of
a very large test sample (or test set), independent from the learning sample (or
learning set). The independency between learning and test sample is important
because it allows to evaluate the performance of models on unknown data. This is
what comes the closest from "real-life" situations, where the model would be used to
classify new samples.

Unfortunately, a large independent test sample is not always available, especially
in studies involving human samples. A way to bypass this problem is to use cross-
validation: it involves splitting the global dataset into k subsets (e.g. k = 5 or
k = 10) of approximately the same size and the same partition of output values;
for each of those k sub-samples, a model is built on the rest of the dataset and
it is evaluated on the sub-sample; the performance measure is averaged on all k
sub-samples, to give an approximation of the performance on the whole dataset.

Fig. 1.13.: Illustration of 5-fold cross-validation.
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Different evaluation measures exist to assess the accuracy and performance of a
model on a test set.
For binary classification (e.g. cancer vs. control), the most obvious idea would be
to count the number of correctly classified objects from the test set. But this simple
measure does not take into account the potential imbalance towards one of the
classes in the test set and the potential bias of the model (e.g. if the model classifies
everything as cancer, the classification will be correct for all real cancer cases).

A natural extension of this global error rate is the confusion matrix (Table 1.7) :

actual condition

actual positive (P) actual negative (N)

pr
ed

ic
te

d
co

nd
iti

on

predicted positive (predP) true positive (TP) false positive (FP)

predicted negative (predN) false negative (FN) true negative (TN)

Tab. 1.7.: Confusion matrix.

From this matrix, different metrics can be directly computed, and one can easily
see if there is a potential bias towards the misclassification of positives or negatives.
These metrics are:

• the true positive rate (or sensitivity): TPR = T P
P

• the true negative rate (or specificity): TNR = T N
N

• the false positive rate: FPR = F P
N

• the false negative rate: TNR = F N
P

The confusion matrix requires that the model outputs a well-defined class.
But in binary classification problems, some algorithms are able to output a probabil-
ity of belonging to one or the other class.
If two objects from the test sample have, say, a probability of 60% and 80% of
belonging to the cancer class respectively, one would like to have access to a perfor-
mance measure which takes into account this difference in terms of confidence of
the predictions.

The ROC curve (receiver operating characteristic curve) allows this. As shown on
Fig. 1.14, it is a graphical plot created by plotting the true positive rate (TPR) against
the false positive rate (FPR). To be able to plot the TPR against the FPR, we need
ranges of values for these 2 metrics. Such ranges can be obtained by varying the
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decision thresholds required when the output of a classifier is a probability.
Let’s get back to the previous example, with the two objects and their respective
probability of belonging to the cancer class: if the threshold chosen is a probability
higher than 55%, then both objects will be classified as cancer, if the threshold
chosen is a probability higher than 70%, then only one of them will be classified as
cancer. One can directly see how the variation of the threshold will generate a full
range of different TPR and FPR values.
Extreme values of the threshold (where either all samples are classified as cancers or
they are all classified as controls) will yield extreme values of TPR and FPR (0 and
1).

Fig. 1.14.: Receiver Operating Characteristic curve

To be able to compare different models, it is often useful to be able to summarize
the ROC curve with a single score.
One can directly see that the Area Under the ROC Curve (AUC) constitutes an
appropriate metric. The AUC will have a value of 1 for a perfect classifier, and a
value of 0.5 for a completely random classifier. The AUC is independent of the
threshold and the class distributions of the samples (= the incidence rate).

Random forests in the diagnostic setting

Already in his 2001 paper introducing the concept of random forests, Breiman used
a breast cancer dataset (699 samples and 9 features computed from a digitized
image of a fine needle aspirate of a breast mass), to test the binary classification
performances of his algorithm and classify the samples as either malignant or benign
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[117].
Since then, starting from 2003, several studies have been using this classification
method in the diagnostic setting, with diverse feature types, ranging initially from
proteomics mass spectrometry data to microarray data [120–128].

microRNAs and random forests

The use of miRNAs as features to classify samples with the random forests algorithm
was first performed in 2010 on a melanoma dataset, to predict post-recurrence
survival [129].
Later studies have shown the usefulness of miRNAs with random forests in glioma
biology, colorectal and pancreatic cancers, invasive bladder tumors, prostate cancers,
Alzheimer’s disease [128, 130–133].

The feature selection challenge

Feature selection in classification or regression problems has become a critical step,
given the high dimensionality of many studies making use of recent technologies
such as microarrays, next-generation sequencing, or miRNA quantification.
Feature selection indeed constitutes a way of reducing the dimensionality of a
classification problem while still retaining the original variables (contrary to principal
components analysis) [122, 134, 135].

The motivations behind feature selection are twofold:

• Finding the variables which are the most relevant to the prediction.
• Reducing the number of input variables, to avoid over-fitting, to improve the

performance of the model, and to be able to build more cost-effective models.

It should be noted that the additional feature selection step adds a layer of complex-
ity in the search for the optimal solution: instead of looking for the optimal model
built with all the initial features, we are now looking for the optimal model among
all possible models built with all possible subsets of the initial features.
In the case of a highly dimensional initial classification problem, the brute-force explo-
ration of the solution space can thus quickly become computationally intractable.

Different feature selection techniques have thus been developed, and they can be
broadly divided into three categories:
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• Filter methods: the features are ranked based on an univariate score (e.g.
p-value of a statistical test performed independently of the classifier), and
the k best features are selected. This method is very fast and scalable to
highly dimensional datasets, but it does not take into account relationships
between features and it might thus miss pairs or groups of features which,
albeit seeming insignificant while being considered alone, provide a high
amount of classifying information while being considered together.

• Wrapper methods build a model to rank each tested feature subset (the
ranking is based on a performance measure through cross-validation). The
choice of the next feature subset to test can be based on the performance of
previously tested subsets. Wrapper methods can be prone to over-fitting and
they are more computationally intensive than filter methods, since they have
to build a model for each tested feature subset.

• Embedded methods perform the feature selection process while building the
model, and are usually specific to a given algorithm.

Several feature selection methods have been designed specifically with random
forests in mind:

• Iterative feature elimination, where features with the smallest importance
metric are iteratively discarded until reaching a minimum out-of-bag (OOB)
error [122].

• Sequential feature introduction, works the other way around, by iteratively
adding features in candidate models, based on their importance metric com-
puted on a previous complete model, and stopping the addition of features
when the model accuracy reaches a maximum [136].
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Transcriptomics

The transcriptome is the complete set of transcripts (mRNAs, non-coding RNAs,
small RNAs) present in a cell. Transcriptomics usually refers to both the identifi-
cation and the quantification of said transcripts. Comparing transcriptomes allows
the identification of genes or transcripts that are differentially expressed in distinct
tissues, or in response to different treatments [137].

Over time, several technologies have been developed to study transcriptomics.
Until the end of the 1990s, northern blotting was the most widely used technique to
quantify RNA.
In 2000, a study introduced reverse transcription polymerase chain reaction (RT-
PCR), and its use to quantify gene expression through the creation of complementary
DNA (cDNA) transcripts from mRNA and the quantitative measuring of cDNA am-
plification using fluorescent probes. This study paved the way to the use of RT-PCR
as one of the go-to methods for gene quantification, DNA microarrays constituting
the other one, being more adapted to the quantification at the whole transcriptome
scale. (see 1.2.2) [138, 139].

Microarray technologies, being relatively inexpensive and having a high throughput,
rapidly allowed to study a wide range of biological questions including the identifi-
cation of genes being differentially expressed between diseased and healthy tissues,
new insights into developmental processes, pharmacogenomic processes, and the
evolution of gene regulation in different species. However, microarrays suffer from
several limitations: hybridization and cross-hybridization artifacts, the need for
prior knowledge about studied transcripts, a limited dynamic range of detection,
the need for complex normalization methods and/or reference sample because of
discrepancies in probe hybridization properties [137, 140].

RNA-Seq refers to the use of next-generation sequencing technologies to sequence
cDNA derived from RNA molecules, and infer the transcriptome composition.
The whole process can be summarized as follows: from an RNA sample, mRNA is
either selected by its polyadenylation tail and fragmented in short reads of hundreds
of bases, or ribosomial RNA (representing 25% of all RNA) is removed, to have an
enrichment in mRNA. The mRNA is converted into cDNA by random priming and
the use of reverse transcriptase. cDNA libraries are then prepared for sequencing.
Sequence reads can then either be mapped on a reference genome, or used in de
novo quantification pipelines.

In addition to preventing some of the limitations of microarrays, sequencing allows
to attain single base resolution, allowing the detection of point mutations, and
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sequencing yields gene or transcripts expression levels which are quantifiable rather
than relative. Beyond expression levels, RNA-Seq also provides information about
chrimeric or fusion transcripts, alternative splicing, allele-specific expression, RNA
editing [141].

Standard RNA-Seq libraries do not preserve information about which strand was
originally transcribed. The library preparation steps involving the synthesis of
randomly primed double-stranded cDNA and the addition of adaptors lead to the
loss of the strand information relative to the original mRNA template. Therefore,
different methods have been developed to perform strand-specific RNA-Seq, the
motivation being the capacity to accurately identify and detect antisense transcripts
and to resolve the correct levels of expression between overlapping transcripts
located on opposite strands [142].

Computational methods in RNA-Seq

Transcriptomics studies require the use of several computational methods related to
the different steps of the global analysis pipeline. Among these steps, mapping the
sequenced reads, quantifying gene or transcript expression, and analyzing patterns
of differential expression constitute fundamental functions belonging to most if not
all bioinformatics pipelines.

RNA splicing is the biological process by which the pre-mRNA transcript is edited,
with the introns being removed and the exons joined together. In several cases,
exons can be skipped and introns can be retained, creating diversity in the splicing
process.

Reads mapping or "reads alignment" in the context of RNA-Seq differs from the DNA
setting in that there is an added layer of complexity caused by the potential splicing
together of non-contiguous exons to create mature transcripts. If DNA mapping tools
also have to address challenges such as the presence of mismatches (point mutations),
insertions, deletions, sequencing errors, the task of mapping sequencing reads to
non-continuous genomic regions joined together from spliced RNA constitutes a
specific pain point encountered by RNA-Seq mapping tools [143].

Spliced aligners, developed for this specific task, can be divided into 2 categories,
based on the method used to map reads. These methods can be briefly described as
follows:

• The "exon-first" method, used by TopHat among other software, is a two-step
process where, at first, reads corresponding to a unique exon are mapped.
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Second, the remaining unmapped reads are split into short fragments which
are then aligned separately. The region surrounding the aligned fragments is
searched for splice junctions [144].

• The "seed-extend" method, used by STAR and several other tools, proceeds
by splitting all reads into short seeds first. Then, the seeds are iteratively
mapped, starting by the first base of the read. If the next seed cannot be
mapped contiguously to the previous one (due to a splice junction), another
acceptable location (an acceptor splice site) is looked for in the vicinity of the
genomic region [143].

Expression quantification is the process of estimating the genes or transcripts
expression in samples, based on sequence read counts. A normalizing step is
always required at first, to address two main sources of potential variability: RNA
fragmentation during library construction which causes longer transcripts to generate
more sequencing reads compared to shorter transcripts present at the same level
and the inter-sample variability which yields different numbers of reads across
samples.

The most common normalization method used for RNA-Seq data is called reads
per kilobase of transcript per million mapped reads (RPKM): it normalizes the read
counts for a transcript or a gene by both the length of said transcript or gene and
by the total number of mapped reads in the sample. Other normalization methods
model read counts as following a negative binomial distribution, with specific
normalization factors to account for gene-based and sample-based differences [145,
146].

As genes can have multiple isoforms and multiple transcripts, one exon can be shared
by different isoforms. The task of assigning a sequencing read to one isoform or
the other can thus be complex. Different strategies exist: one can estimate isoform
expression by counting only the unambigous reads mapping only to one isoform
but this method does not work for genes with most exons shared among isoforms;
another technique is to estimate the "most likely" expressed isoform corresponding
to the sequencing reads.

Depending on the the goal of the analysis, a choice of counting sequencing reads by
genes and not by transcripts or isoforms can also be made, simplifying the process.
In this case, a count of all sequencing reads overlapping all the exons of a gene
is performed. An important feature of some expression quantification tools is the
dismissal of reads mapping ambiguously to multiple genes. This is justified to prevent
discrepancies in the downstream analysis process, which is usually the search for
differentially expressed genes [145, 147].
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Differential expression analysis allows to systematically detect changes of gene or
transcript expression across experimental conditions. Several characteristics of the
read counts used as input, such as non-normality, a dependence of the variance on
the mean, and a usually small number of samples, make the use of specific statistical
models required [146].

Due to the often small number of samples, testing each gene separately makes it
difficult to account for the uncertainty of the within-group variance (or dispersion).
A way to work around this, thanks to the large number of genes assessed, is to make
the assumption that the within-group variance of different genes is similar in the
same experiment and/or that the variance is dependent on the average expression
of the gene.

In most differential expression analysis software, the normalized read counts dis-
tributions is modeled by a negative binomial model, which allows the use of exact
(non-asymptotic) testing for differential expression [146, 148, 149].

The number of replicates required in an RNA-Seq experiment varies based on the
effect of the expected biological variation (i.e. the fold change) and the variability in
measurement, which depends on the technical noise. Table 1.8 shows an example of
calculations for the probability of detecting differential expression for a single gene
at a significance level of 5%, when comparing two groups with a negative binomial
model, as computed by the RNASeqPower package [150].

effect size (fold change)

1.25 1.5 1.75 2

number of
replicates
per group

3 0.09 0.21 0.36 0.51

5 0.13 0.32 0.54 0.72

10 0.21 0.56 0.83 0.95

15 0.29 0.73 0.95 0.99

Tab. 1.8.: Relationship between effect size, number of replicates, and statistical power. The
within-group variance and the average read depth have been fixed at respective values of
0.4 and 40 for the sake of simplicity.

Long non-coding RNAs

The human genome contains a large number of nonprotein-coding sequences. In fact,
up to 80% of the human genome is transcribed, thus encompassing a large number
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of non-coding RNAs. Among them, long noncoding RNAs (lncRNAs), are defined as
nonprotein-coding transcripts that are longer than 200 nucleotides [151–153].

lncRNAs can be defined by their location relative to nearby protein-coding genes:

• Antisense lncRNAs or natural antisense transcripts (NAT) are lncRNAs that
initiate inside or at the 3’ location of a protein-coding gene, which are tran-
scribed in the opposite direction of protein-coding genes, and which overlap at
least one coding exon.

• Intronic lncRNAs are lncRNAs that initiate inside of an intron end without
overlapping any exon.

• Bidirectional lncRNAs are transcripts that initiate in a divergent fashion from
the promoter of a protein-coding gene.

• Intergenic lncRNAs (or large intervening noncoding RNAs or lincRNAs) are
lncRNAs with separate transcriptional units from protein-coding genes [154].

Antisense lncRNAs have been shown to regulate the expression of protein coding
genes by affecting transcription and mRNA stability. Many expressed genomic loci
produce RNAs from both the sense and antisense DNA strand, and more than 50%
of all human RNAs share a partial or complete overlap with an opposite-strand
transcript. However, antisense transcripts are generally poorly expressed and have,
on average, expression levels varying between two to ten orders of magnitudes lower
than their sense counterparts. A recent study noted, on average, opposite strand
expression from more than 38% of annotated protein coding genes [155–158].

Antisense lncRNAs can exert an effect on the DNA strand from which they are
produced (cis effect) or on different strands (trans effect). Given the fact that both
the sense and antisense transcripts are transcribed from the same genomic region,
it is expected that antisense transcripts behave more frequently in cis than other
ncRNAs that commonly function in trans [157].

Antisense expression can affect gene expression through different mechanisms,
which happen at different stages of the gene expression process. Table 1.9 shows
examples of antisense lncRNAs effects on gene expression and Figures 1.15, 1.16,
1.17. detail 3 of those mechanisms.

Fig. 1.15.: Abnormal transcriptional extension of the LUC7L locus creates an antisense
transcript overlapping with HBA1, which methylates the HBA1 promoter and inhibits its
expression. (Pelechano & Steinmetz [157])
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Fig. 1.16.: HOTAIR inhibits the homeobox D (HOXD) locus in trans via Polycomb repressive
complex 2 (PRC2) recruitment. (Pelechano & Steinmetz [157])

Fig. 1.17.: ANRIL recruits PRC2 in cis, which induces histone H3 lysine 27 (H3K27) methy-
lation. This represses the transcription of CDKN2B-CDKN2A. (Pelechano & Steinmetz [157])

Antisense lncRNA Mechanism of action Effect

LUC7L DNA methylation Methylates HBA1 promoter CpG island, which re-
presses its expression

XIST Chromatin modification Inactivates X chromosome gene expression

ANRIL Chromatin modification Represses the tumor-suppressor locus
CDKN2B–CDKN2A by both H3K27 methylation
and DNA methylation

BDNF-AS Chromatin modification Represses BDNF by histone modification

HOTAIR Chromatin modification Silences the HOXD locus in trans by the recruitment of
Polycomb proteins

ZEB2-AS Isoform variation Induces exon skipping in ZEB2, which produces an al-
ternative isoform with increased translation efficiency

BACE1-AS RNA stability Increases stability of BACE1 by masking an miRNA-
binding site

WDR83, DHPS RNA stability Increase their mutual stability by forming a duplex
within their 3’ untranslated regions

Tab. 1.9.: Examples of antisense lncRNAs effects on gene expression. (Pelechano & Stein-
metz [157])
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Antisense lncRNAs in cancer

As shown in Table 1.9, several antisense lncRNAs play a role in cancer.

The oncogenic process involving antisenses can involve tumor supressor genes:

• In 2008, a study had identified antisense lncRNAs for each of 21 well-known
tumor suppressor genes, and it showed that tumor suppressor CDKN2B was
silenced, through the expression of its antisense [159].

• Wrap53, a natural antisense transcript of p53, regulates endogenous p53
mRNA levels. Moreover, a knock-down of Wrap53 leads to a decrease in p53
levels and to the removal of p53 induction following DNA damage [160].

These 2 examples already show that antisense lncRNAs can behave both in concor-
dant or discordant regulation, i.e. the antisense lncRNA can either augment or lower
the levels of the corresponding mRNA, respectively. The majority of sense/antisense
pairs of mammalian transcripts show concordant regulation [161].

Several other lncRNAs have been studied and shown to be associated with cancer:

• HIF-1, which is a transcription factor regulating genes involved in angiogenesis,
invasion, and tumor progression, is over-expressed in a large part of human
cancers and it is correlated with poor prognosis and chemoresistance. Camp-
tothecin (CPT), which is an antitumor DNA topoisomerase I (Top1) inhibitor,
increases the levels of two antisense lncRNAs of HIF-1 [162].

• An over-expression of NCYM, which is a an antisense of MYCN, is associated
with poor prognosis in neuroblastoma via promotion of production of anti-
apoptotic protein Myc-nick [163].

• Survivin, which inhibits apoptosis, is expressed in cancer cells. EPR-1, which is
an antisense lncrRNA of Survivin downregulates its expression, resulting in a
decrease in cell proliferation and an increase in apoptosis [164] .

• HOTAIR is strongly induced in approximately 25% of breast cancers, and
HOTAIR expression is highly predictive of metastasis and death. HOTAIR
overexpression drives breast cancer metastasis in vivo and elevated HOTAIR
levels are predictive of metastasis or progression in colon and liver cancers,
suggesting a general oncogenic trait [154].

• WT1 is a developmental gene mutated in Wilms’ tumor (WT) and acute myeloid
leukaemia (AML). Its antisense, WT1-AS, is aberrantly spliced in AML and is
subject to epigenetic defects in WT [161].

• AFAP1-AS1, which is an antisense of AFAP1, is extremely hypomethylated and
overexpressed in Barrett’s esophagus (BE) and esophageal adenocarcinoma
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(EAC). When it is silenced by siRNA, there is an inhibition of proliferation and
colony-forming ability, induced apoptosis, and reduced EAC cell migration and
invasion [165].

• p15, which is a cyclin-dependent kinase inhibitor involved in leukaemia, is
silenced through the recruitment of PRC2 by the ANRIL antisense [166].

These numerous examples highlight the important role played by antisense lncRNAs
in human cancers. In some cases, the mechanism by which the antisense lncRNA acts
is well understood, while in others, only an over- or under-expression, or a mutation
of the antisense is reported. It should be noted that antisense lncRNAs and lncRNAs
in general are also involved in several other pathologies such as Alzheimer’s disease,
spinocerebellar ataxia, Parkinson’s disease, schizophrenia, fragile X syndrome, Hunt-
ington’s disease, psoriasis, etc.
This global presence of regulatory mechanisms involving lncRNAs and antisenses
tend to support their role as an added layer of complexity in most biological pathways
[167].

44 Chapter 1 Introduction



2

Exome Copy Number Variation

detection: use of a pool of

unrelated healthy tissue as

reference sample

„Technology presumes there’s just one right way to
do things and there never is.

— Robert M. Pirsig

Summary

The detection of copy-number variation (CNV) alterations in the genomic profile of
cancer patients constitutes a standard procedure routinely performed in hospitals.
Over the years, different techniques have been used to gather the CNV profile
of samples, with varying precision and cost. As of today, comparative genomic
hybridization microarrays remain the most used technique.

In this context, the use of exome sequencing, which is already applied to detect
point mutations, as a tool able to yield CNV profiles had already been considered.
However, in a cancer setting, existing exome-based techniques often make use of a
healthy reference sample from the same patient. Existing publications had suggested
that a pool of unrelated healthy individuals could be used as reference sample, but
the idea had never been formally tested.

Here, we validated this proposal by testing it on a small number of multiple myeloma
patients. Moreover, faced with the imprecision of existing CNV profiles comparison
methods, we introduced a new metric, designed to quantify the difference between
CNV profiles irrespectively of the technique used to generate said profiles.

My personal contributions to this research project range from the first bioinformatics
steps required by the exome sequencing analysis, to the different comparisons
performed between CNV profiles. I also designed and implemented the distance
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metric used to compare CNV profiles. Finally, I took part in the writing of the
manuscript.
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ABSTRACT
An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor
samples based on paired exome data where a matched healthy tissue constitutes the reference have been
published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previ-
ously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still
aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design
a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed
the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference
in exome-based CNV detection. We compared the CNV profiles obtained with three di�erent approaches
(aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of
eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual
analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution)
lack in precision when confronted with low LRR values, as they only consider the binary status of each
CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV pro-
files. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma
samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample.

K E Y W O R D S
NGS, WES, CNV, aCGH, normalization, multiple myeloma, control, read count

1 INTRODUCTION

Copy number variations (CNVs) are genomic modifications
responsible of phenotypic diversity but are also involved
in many pathologies like cardiovascular diseases, autoim-
mune diseases, neurodegenerative diseases, and cancers
(Beroukhim et al., 2010; Kim et al., 2013). In cancers chro-
mosomal alterations might lead to several specific genomic
profiles which can be linked to prognosis or response to treat-
ment, for example the amplification of the ERBB2 gene in
breast cancer leads to its overexpression, and to sensitivity to
treatment by trastuzumab (Robert et al., 2006).

Multiple myeloma is a hematological cancer characterized
by a high level of CNV, implicating plasma cells. Some of
them are linked to an adverse prognosis: del(17)(p), del(1)(p),
dup(1)(q), and del(13) (Fonseca et al., 2004; Walker et al.,
2010). On the other hand, hyper-diploidies involving odd
chromosomes are rather associated with a favorable outcome

(Smadja et al., 2001). CNV assessment during treatment
course of these malignancies is also essential to evaluate dis-
ease progression (Avet-Loiseau et al., 2009; Chung, Mulligan,
Fonseca, & Chng, 2013).

Traditionally, CNV detection has been performed with
cytogenetic techniques such as fluorescent in situ hybridiza-
tion (FISH). Comparative genomic hybridization arrays
(aCGH) are currently considered as the reference technology
to measure genomic alterations. However, next-generation
sequencing (NGS) could soon become an essential tool for
cancer study as it allows the detection of punctual mutations
and insertions/deletions. Moreover, whole genome sequenc-
ing (WGS) can also be used for the detection of CNVs and
displays a higher resolution than aCGH, down to 40 bp (Xi
et al., 2011). However in the clinical field, WGS is too expen-
sive and WES or targeted sequencing is more commonly con-
sidered. CNV are more easily computed from WGS data,
as the entire genome is theoretically sequenced at constant
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coverage and one does not have to take into account the inter-
probe coverage variability that arises in WES (Hwang et al.,
2015; Liu et al., 2013). That being said, WES focuses on a
highly function-enriched subset of the genome and it requires
smaller computational resources for processing and storage of
the data than WGS. For these reasons, a number of dedicated
computational algorithms have been developed to accurately
retrieve segmental CNV from WES data (Guo et al., 2013;
Tan et al., 2014).

Several factors are responsible for biases in CNV detection:
GC rich fragments, variability of the fragmentation process
during library preparation, or copy number polymorphisms.
Most of the bioinformatic tools set-up for CNV detection in
tumor by WES consider these potential biases and try to min-
imize them (Xi et al., 2011). Some of the algorithms designed
to detect CNV on tumor samples also require a matched paired
healthy tissue sampled from the same patient, as they use the
read depth ratio between tumor and healthy sample to infer
the copy number at each locus. This control sample needs to
be compiled from the same technological platform. However,
such paired reference tissue is very seldom available, espe-
cially in large epidemiology studies, and could theoretically
be replaced by the use of a pool of unrelated healthy tissues
from patients of the same ethnicity (Sathirapongsasuti et al.,
2011). However, no data are currently available in the liter-
ature to state if this solution would allow the acquisition of
comparable CNV results.

To evaluate if the replacement of the matched paired
healthy tissue with a pool of unrelated healthy tissue confers
the same results, we have compared the performances of these
two reference types against results obtained by aCGH, consid-
ered as the gold standard.

The whole study was conducted on a multiple myeloma
(MM) cohort. Malignant cells population was enriched by
positive selection, and analyzed by WES (Nextera, Illumina)
and aCGH (SureSelect, Agilent).

2 MATERIALS

2.1 Ethical concerns
Ethics approval was obtained from the Institutional Review
Board (Ethical Committee of the Faculty of Medicine of the
University of Liège) in compliance with the Declaration of
Helsinki. All patients signed a written informed consent form.
This work consisted of a prospective study and did not lead to
any change in the treatment of enrolled patients.

2.2 Patients and sample preparation
Bone marrow samples of 10 MM patients were obtained
from CHU of Liège. CD138 human MicroBeads (Miltenyi
Biotec) were used to positively select plasma cells and enrich

malignant cell populations. Genomic DNA (gDNA) was
extracted from enriched plasma cells using AllPrep DNA
extraction kit (Qiagen) following manufacturer’s instructions.
Normal gDNA for three of these patients was collected and
extracted from buccal cells with Gentra Puregene Buccal Cell
Kit (Qiagen) following manufacturer’s instructions. Eight
additional normal DNA were also extracted using the same
methodology and separately sequenced to constitute a pool of
normal DNA.

2.3 aCGH and CNV analysis
Plasma cells of the whole MM cohort were analyzed with the
SurePrint G3 Human CGH Microarray Kit 8 ù 60K (Agi-
lent Technologies) according to manufacturer’s instructions,
and results were interpreted using the Cytogenomics soft-
ware (Agilent Technologies). The arrays were scanned with
a G2565CA microarray scanner (Agilent Technologies) and
the images were extracted and analyzed with CytoGenomics
software v2.0 (Agilent Technologies). An ADM-2 algorithm
(cut-o� 6.0), followed by a filter to select regions with three
or more adjacent probes and a minimum average log2 ratio
of ±0.25, was used to detect copy number changes. The qual-
ity of each experiment was assessed by the measurement of
the derivative log ratio spread with CytoGenomics software
v2.0. Genomic positions were based on the UCSC human ref-
erence sequence (hg19) (NCBI build 37 reference sequence
assembly).

2.4 Whole exome sequencing and CNV call
Fifty nanograms of double-stranded gDNA were used to pre-
pare libraries with a Nextera Rapid Capture Expanded Exome
Kit (Illumina) according to the manufacturer’s instructions.
Libraries were checked for integrity using Agilent High Sen-
sitivity DNA Kit (Agilent Technologies) after tagmentation
and after the last step of library preparation. Sequencing reac-
tions were performed on a HiSeq2000 sequencer (Illumina).

3 METHODS AND RESULTS

3.1 Whole exome sequencing and CNV call
The raw sequencing data were aligned on the Human refer-
ence genome (NCBI build 137 hg19) with the BWA software
(Li & Durbin, 2009). The resulting alignment BAM files went
through several filtering and correcting steps (local realign-
ment, base quality score recalibration, low quality reads fil-
tering, and PCR duplicate reads removal) performed using
the Genome Analysis Toolkit (McKenna et al., 2010) and the
Picard software package (http://picard.sourceforge.net/).

A slightly modified version of the coverage files gener-
ated by the CalculateHsMetrics tool of the Picard software
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package (using the PER_TARGET_COVERAGE software
option) was used as input of the ExomeCNV software (ver-
sion 1.4).

For three tumor samples for which matched normal tissue
was available, two CNV profiles were called using the rec-
ommended parameters of ExomeCNV: one with the matched
normal sample as control and the other one with a pool of
unrelated healthy samples as control.

The ExomeCNV input file representing the pool of eight
unrelated healthy samples is generated thanks to a Perl script
that averages the coverage and average_coverage columns
of the Exome CNV input file among all unrelated healthy
samples.

The Perl scripts used to convert the output files of the Cal-
culateHsMetrics tool to input files suitable for ExomeCNV
and to generate the ExomeCNV input file for the pool are
available as supplementary data.

3.2 CNV profiles comparison
Several analyses were performed to compare the CNV pro-
files obtained through aCGH, Exome CNV with the matched
normal sample as control and Exome CNV with the pool of
eight unrelated healthy samples as control. Only autosomes
were considered in this study.

For the sake of brevity, for each sampleSk, let us noteSkC ,
SkM , SkP , respectively, the CNV profile obtained through
arrayCGH, the CNV profile obtained through the Exome
CNV software with the matched normal sample as control and
the CNV profile obtained through the Exome CNV software
with the pool of eight unrelated healthy samples as control.

3.3 Deletion/Amplification ratio
The deletion/amplification ratio has been determined for each
CNV profile, as to detect possible method-specific biases.
Amplifications and deletions with a |LRR| (|Log-R-Ratio|)
smaller than 0.29 (corresponding to alterations whose copy
number is approximately between 1.6 and 2.4) were consid-
ered to be inconsistent and were filtered out for all CNV pro-
files. The ratio is based on the total number of deleted and
amplified bases, as this gives a more reliable information than
a ratio based on the count of amplifications and deletions. As
shown on Figure 1, both Samples 1 and 3 show close dele-
tion/amplification ratios and absolute values for each of the
three profiles. No specific bias in favor of amplification or
deletion is found in the CNV profiles obtained through Exome
CNV software with the pool of eight unrelated healthy sam-
ples as control. Interestingly, for Sample 2, the absolute val-
ues for the number of deleted bases are very similar, but the
number of amplified bases varies. S2P thus shows a dele-
tion/amplification ratio much more similar to S2C than S2M .
This is explained by the fact that most of the missing ampli-
fications in S2M are present but have in fact a low LRR and

are filtered out. Due to their low LRR, these amplifications
are undistinguishable from false positives.

3.4 CNV size distribution
To know if the use of a pool as reference had an impact on the
size of detected CNV, we determined the CNV size distribu-
tion for each profile (see Fig. 2). Amplifications and deletions
with a |LRR| smaller than 0.29 were filtered out. Although the
absolute count of very small CNVs (< 1 kb) is higher in pro-
files obtained through the use of a pool as reference, their rel-
ative contribution remains unchanged and insignificant (see
Additional File 1).

3.5 Confusion matrix
For both exome-based CNV profiles of each sample (SkM
and SkP ), TPR (true-positive rate), FPR (false-positive rate),
TNR (true-negative rate), and FNR (false-negative rate) were
determined separately for amplifications and deletions, as
shown in Table 1. Amplifications and deletions with a |LRR|
smaller than 0.29 were filtered out. Interestingly, CNV pro-
files obtained through the use of a pool of eight unrelated
healthy individuals yield overall slightly better results. The
low TPR value for the amplifications of S2M can again be
explained by LRR values not passing the aforementioned
threshold.

3.6 CNV profile distance metric
Each of the previous analyses highlights potential biases, sim-
ilarities, and/or discrepancies between CNV profiles but, due
to methodological specificities, none gives a global picture
of the real distance between profiles, as even the outcomes
of the confusion matrix do not take into accounts the varia-
tion of copy number in amplifications and deletions (e.g., if
the reference contains a segment of copy-number 3 and the
tested profile contains a segment of copy-number 4 at the
same locus, both profiles are considered to contain an ampli-
fication, no di�erence penalty is taken into account and the
confusion matrix values are the same as they would be if both
segments shared the exact same copy-number).

We propose a new distance metric, designed to compare
CNV profiles, which takes into account the exact LRR val-
ues, thus giving a more precise insight, independently of the
technique used to obtain the profiles.

Each CNV profile is represented as a combination of
sequences of LRR segments of fixed size, one sequence for
each chromosome.

Let j, k be the indexes of two CNV profiles.
At each segment s, the di�erence in terms or LRR between

the two profiles is noted as

ÛÛÛLRRsj * LRRsk
ÛÛÛ .
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F I G U R E 1 Amplification and deletion ratios for each sample. Bar heights represent the percentage of amplified or deleted bases. The total number of
amplified or deleted megabases is written inside each bar

F I G U R E 2 CNV size distribution. Bar heights represent the relative contribution of each group

From each LRR value, the corresponding copy-number for
autosomes can be derived by

CN = 2 ù 2LRR.

The di�erence in terms of copy number at each segment s
can thus be expressed as

ÛÛÛCNsj * CNsk
ÛÛÛ =

ÛÛÛ2 ù
�
2LRRsj * 2LRRsk

�ÛÛÛ .

We defined the distance metric between two CNV profiles
as the sum of distances between all segments divided by the
total number of segments.

d (j, k) = 1
S

ù
S…
s

ÛÛÛ2 ù
�
2LRRsj * 2LRRsk

�ÛÛÛ,

where S is the total number of segments.
The relation between the genome size, segment size, and

total number of segments is noted:
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T A B L E 1 Confusion Matrix

S1_M S1_P S2_M S2_P S3_M S3_P
AMP TPR 97.29 96.58 12.31 99.24 99.96 97.01

FPR 2.71 3.42 87.69 0.76 0.04 2.99

TNR 63.83 82.14 99.98 97.79 89.23 92.63

FNR 36.17 17.86 0.02 2.21 10.77 7.37

DEL TPR 94.83 96.43 98.01 98.01 96.82 95.88

FPR 5.17 3.57 1.99 1.99 3.18 4.12

TNR 97.5 97.59 99.63 97.4 68.06 89.29

FNR 2.5 2.41 0.37 0.6 31.94 10.71

T A B L E 2 Distance Between Each CNV Profile

Sheet 1
S1_M S1_P S1_C S2_M S2_P S2_C S3_M S3_P S3_C

S1_M 0 1.4 1.9 3.5 3.5 3.5 4.8 4.7 4.1

S1_P 1.4 0 1.3 3.5 3.1 3.3 4.5 4.5 4.2

S1_C 1.9 1.3 0 2.6 2.5 2.3 4.6 4.4 4.2

S2_M 3.5 3.5 2.6 0 0.7 0.4 4 3.7 3.6

S2_P 3.5 3.1 2.5 0.7 0 0.5 3.8 3.6 3.7

S2_C 3.5 3.3 2.3 0.4 0.5 0 4 3.6 3.5

S3_M 4.8 4.5 4.6 4 3.8 4 0 1 2

S3_P 4.7 4.5 4.4 3.7 3.6 3.6 1 0 2

S3_C 4.1 4.2 4.2 3.6 3.7 3.5 2 2 0

G = S ù L, where G is the genome size and L is the seg-
ment size

A Perl script implementing this distance metric is available
as supplementary data. For clarity, all distance values have
been multiplied by 10.

Table 2 shows distance values computed for all possi-
ble combinations of the nine CNV profiles generated based
on our cohort. Several observations can be made based on
these results. For each sample, the smallest distance is always
found between the two profiles obtained through the use of
ExomeCNV. For each sample, the distance between the aCGH
profile and the ExomeCNV profile using a pool of eight unre-
lated healthy individual as control is similar to the distance
between the aCGH profile and the ExomeCNV profile using
the matched paired healthy tissue as control. The intersample
distance, whatever the technique, is always greater than the
intrasample distance.

3.7 Additional validation
The same analyses were performed on 7 MM samples for
which no matched normal tissue was available. Here, only
SkP and SkC (respectively the profile obtained through
ExomeCNV with a pool, and the profile obtained through
aCGH) were compared.

The proportion of deletion to amplification does not show
any specific bias and the amplified and deleted bases counts

are highly correlated between SkP and SkC (Pearson corre-
lation coe�cient of 0.975, see Additional file 2 for the count
of deleted and amplified bases).

The confusion matrix values obtained when comparing
SkP to SkCare relatively similar to the previous values
obtained. The average values for the true-positive rate and
the true negative rate for the amplifications are respectively
89.85% and 92.41%. The corresponding values for the dele-
tions are respectively 97.04% and 74.97% (see Additional file
3 for the complete data).

The distance metric was computed for each pair of the 14
profiles. As previously, for each sample the intrasample dis-
tance is always smaller than all intersamples distances involv-
ing this sample. The average value for intrasample distance
was 1.8 ± 0.2, while the average value for intersample dis-
tance was 3.25 ± 0.16. All distance values are shown in addi-
tional file 4.

4 DISCUSSION

To date, several CNV detection tools catered to WES data
exist, some of these tools make use of paired healthy DNA
as references, while others use di�erent methodologies and
do not need such references. Paired methods that use the
read depth or read count ratio are often more e�ective but
inadequate for the analysis of a sample without corresponding
healthy DNA.

Although ExomeCNV is a method based on read depth
using paired healthy DNA as control, its authors suggested
that a pool of unrelated healthy individuals could also be used
as reference. Based on preliminary results, the authors also
emit the hypothesis that the use of such a pool could lead
to more reliable results thanks to a reduction in variance of
depth-of-coverage (Sathirapongsasuti et al., 2011). No thor-
ough analysis had previously been performed to assess the
validity of these claims. Furthermore, we propose a new, bet-
ter suited, way to compare CNV profiles, independently of the
technique used to obtain said profile and tested this method on
a small number of multiple myeloma samples.

Research and clinical application of WES for CNV detec-
tion are most useful in the cancer field. Indeed, many clini-
cally actionable genetic changes have been described. These
changes include CNV (deletions, amplifications) as well as
punctual mutations. Their identification has an increasing
clinical impact as they define the prognosis and can also pre-
dict treatment response or resistance, paving the way toward
personalized medicine and the use of specific targeted treat-
ments. The molecular diagnosis remains, however, di�cult
as it is presently based on limited amounts of DNA (from
biopsies) and has to deal with the tumor heterogeneity. More-
over, large retrospective studies based on samples stored in
biobanks are needed to validate genetic biomarkers in vari-
ous cancers.
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In our study we explored MM which is characterized by
a high genomic instability. Indeed, alterations with clinical
impact like monosomy 13 and trisomy of odd chromosomes
are easily detected with this method while partial alterations
of chromosome 1 and 17 sometimes show some approxima-
tion concerning the exact breakpoints. Even if the impact of
punctual mutations in this type of cancer is still unclear, a
few studies performed by NGS show a high level of muta-
tions implicating genes frequently involved in cancers and
coding for therapeutic targets (Chapman et al., 2011; Lohr
et al., 2014). However, as it has been demonstrated that MM is
characterized by a high level of clonal heterogeneity accord-
ing to the stage of the disease, WES allows an evaluation of
each clonal population proportion at the di�erent stages of
the disease (Walker et al., 2014). It could therefore be help-
ful for the follow-up of patients to evaluate clonal evolution
in response to treatment at relapse. A simple method identify-
ing point mutations and CNVs is certainly required for such
a clinical application.

In conclusion, our data indicate that a reliable picture of
CNV alterations in MM samples could be obtained from WES
in the absence of a matched healthy sample. As our data were
obtained on a very low number of MM samples, they will need
to be confirmed on larger cohorts of other cancer types. If this
can be done, it would considerably facilitate genomic studies
on biobank material as well as in the clinical setting as the
collection, study and data storage for matched normal DNA is
expensive and generates cancer-unrelated incidental findings.
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Circulating microRNA-based

screening tool for breast cancer

„Treat the patient, not the X-ray.

— James M. Hunter

Summary

In this study, we further advanced the emerging field of non-invasive diagnosis using
circulating biomarkers. Through the recruitment of a large cohort of breast cancer
patients and age-matched controls, we were able to gather plasma samples and
detect the levels of circulating microRNAs (miRNAs) by the use of RT-qPCR.

Basing our work on the existing differences between cases and controls for a large
number of miRNAs, we have developed a multivariate diagnostic model able to
classify samples into the 2 classes.

We went further than previous studies, by showing that our model, which exhibited
fine performance on a substantial validation cohort, was also able to discriminate
between breast cancer and ovarian cancer samples, and to correctly classify breast
cancers in remission, and metastatic breast cancers.

My personal contributions to this research project were centered on the development
of the random forests-based methodology, encompassing the feature selection step,
the model building, and the validation of the model on all cohorts.

I also took part in the writing of the manuscript.
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ABSTRACT
Circulating microRNAs (miRNAs) are increasingly recognized as powerful 

biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels 
were measured to be used as an alternative screening procedure to mammography 
for breast cancer diagnosis.

A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A 
diagnostic model was designed based on the expression of 8 miRNAs measured first in 
a profiling cohort composed of 41 primary breast cancers and 45 controls, and further 
validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 
breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors.

A receiver operating characteristic curve derived from the 8-miRNA random 
forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy 
of the diagnostic tool remained unchanged considering age and tumor stage. The 
miRNA signature correctly identified patients with metastatic breast cancer. The use 
of the classification model on cohorts of patients with breast cancers in remission 
and with gynecologic cancers yielded prediction distributions similar to that of the 
control group.

Using a multivariate supervised learning method and a set of 8 circulating 
miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer.

INTRODUCTION

Breast cancer is the most frequently diagnosed 

cancer in females worldwide; its rate in Western countries 

has increased since the 1990s [1]. During the same period, 

mortality from breast cancer has decreased due to early 

detection and improved treatments [2].

Currently, mammographic screening, followed 

by invasive core needle biopsies in cases of suspected 

malignancy, allows early breast cancer diagnosis. 

Mammographic screening is an accessible but unpleasant 

and inaccurate test; in 1000 screened women, 15 of 

these women are estimated to have a biopsy because of 

a suspicious abnormality, and the biopsy is estimated to 

diagnose breast cancer in 4 of these 15 women [3].

MicroRNAs (miRNAs) are approximately 

22-nucleotide long RNAs that inhibit gene expression 

by binding to target messenger RNAs (mRNAs) [4]. 

Currently, more than 2000 mature human miRNAs have 

been identified, and these miRNAs may regulate up to 
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60% of human protein-coding genes [5]. miRNAs are 

involved in multiple biological processes including cell 

proliferation, differentiation and apoptosis [6, 7]. Their 

expression is modified in various cancer subtypes, where 
these miRNAs act as tumor suppressors or oncogenes and 

play a key role in tumorigenesis [8].

All cell types release miRNAs in peripheral blood 

under both normal and pathological conditions. These 

circulating miRNAs are wrapped in 40-to 100-nm  

lipoprotein vesicles called exosomes, which are 

membrane-enclosed cell fragments [9]. These miRNAs 

appear to be protected from endogenous RNase activity 

by exosomes and are therefore particularly stable in 

plasma [10]. Therefore, circulating miRNAs are promising 

biomarkers for the early and minimally invasive diagnosis 

of breast cancer [11]. Several studies have already 

explored miRNAs from that perspective, leading to mixed 

results in terms of performances [12–29]. Very different 

diagnostic signatures have been obtained, most likely due 

to the choice of the sample preparation, the technology 

used and the study design, such as choice of proper 

normalization and careful validation. 
In the present study, to propose new tools for breast 

cancer screening, we constructed a diagnostic test based 

on 8 circulating miRNAs and confirmed its performance 
in a large cohort of primary breast cancer patients and 

controls. The diagnostic test was also validated in patients 

with breast cancer in remission, patients with metastatic 

breast cancer and patients with gynecologic cancer to test 

for breast cancer specificity and follow-up. Moreover, 
particular attention was given to normalization and 

bioinformatic analysis procedures.

RESULTS

Patients and controls

Patients with treatment-naive primary breast 

cancer (n = 149, median age = 55 yr, range = 26–

87 yr), breast cancer in remission (n = 35, median 

age = 49 yr, range = 28–79 yr, median time follow-up  

since remission = 33 months), metastatic breast 

cancer (n = 31, median age = 59 yr, range = 35–79 yr) 

and gynecologic cancer (n = 30, median age = 62 yr, 

range = 38–83 yr) were recruited prospectively at CHU 

of Liège and Clinic Saint-Vincent (Liège, Belgium) 

from 7/2011 to 9/2014. Gynecologic tumors consisted of  

non-metastatic endometrial (n = 16), ovarian (n = 10) and 

cervical (n = 4) cancers. Controls were obtained from 133 

cancer-free females of similar age (median age = 51 yr, 

range = 40–74 yr) with normal mammograms (n = 72), 

benign calcifications (n = 30) or simple cysts (n = 31). 

Controls had no history of cancer in the last 5 years. 

In total, 378 patients were included in this study.

All breast cancer patients and tumor characteristics 

are summarized in Table 1.

Pilot study

A pilot study that consisted of measuring the 

expression of 742 plasma miRNAs in 18 primary 

breast cancer patients was first conducted. In total, 188 
miRNAs were chosen based on their expression levels 

(mean quantification cycle (Cq) value < 36) in the pilot 
experiment. Clinicopathological data for these patients and 

the list of the 188 selected miRNAs are summarized in 

Table 1 and Supplementary Table 1, respectively.

Evaluation of hemolysis

We first evaluated the quality of our sample 
collection and preparation. Hemolysis leads to the 

contamination of plasma with RNA from red blood cells. 

Absorbance at 414 nm (ABS
414

), the maximum absorbance 

of hemoglobin, correlates with the degree of hemolysis. 

ABS
414

 was measured for all samples using a NanoDrop. 

The median ABS
414

 level was 0.19 ± 0.1, with a hemolysis 

cut-off value fixed at 0.2. Furthermore, the level of a 
miRNA highly expressed in red blood cells (miR-451) 

was compared with the level of a miRNA unaffected by 

hemolysis (miR-23a), with a ΔCq (miR-23a - miR-451) 
of more than 5 indicating possible erythrocyte miRNA 

contamination. The median ΔCq (miR-23a - miR-451)  
was 2.6 ± 1.5 in our cohort (primary breast cancer 

group = 3 ± 1.5, control group = 2.1 ± 1.2, breast cancer 

in remission group = 2.5 ± 1.5, metastatic breast cancer 

group = 2.8 ± 1.2, gynecologic cancer group = 2.3 ± 1.8). 

Based on these results, no patients were discarded.

miRNA deregulation is observed in primary as 
well as metastatic breast cancer patients

When comparing the miRNA profiles of newly 
diagnosed primary breast cancers to control miRNA 

profiles, 112 miRNAs were found to be significantly 
deregulated, with a final set of 107 miRNAs after adjusting 
the P-value for multiple testing. miR-16 and let-7d were 

the most up- and downregulated miRNAs, respectively. 

Global upregulation of miRNA expression was observed 

in primary breast cancer patients compared to controls 

(1.35-fold change).

In a second analysis, miRNA profiles from the 
plasma of patients with metastatic breast cancer were 

compared to those of the controls. Eighty-four miRNAs 

were found to be significantly deregulated, with a 
final set of 53 miRNAs after adjusting the P-value for 

multiple testing. The most significantly upregulated 
miRNA was miR-148a, and the most significantly 
downregulated miRNA was miR-15b. As observed in 

primary breast cancer samples, global upregulation of 

miRNA expression was observed in metastatic breast 

cancer patients when compared to healthy subjects (1.1-
fold change).
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Statistical analyses were also performed to compare 

both primary and metastatic breast cancer patient plasma 

miRNA profiles to controls using the Kruskal-Wallis 
test. Fifty-six miRNAs were significantly modified in 

Table 1: Clinicopathological data and tumor characteristics

Characteristics
Primary breast 
cancers – pilot 
study (n = 18)

Primary breast 
cancers – principal 

study (n = 149)

Metastatic 
breast cancers 

(n = 31)

Breast cancers in 
remission (n = 35)

Median age (range) (y) 58 (29–70) 55 (26–87) 59 (35–79) 49 (28–79)

Estrogen receptor [n (%)] 12 (67) 117 (79) 28 (90) 22 (63)

Progesterone receptor  
[n (%)]

11 (61) 109 (73) 22 (71) 18 (51)

HER2 [n (%)] 6 (33) 30 (20) 6 (19) 18 (51)

Ki67 (median ± SD) (%) 21 ± 20 20 ± 24 27 ± 23 37 ± 23

Initial T staging [n (%)]

NA 0 (0) 1 (< 1) 2 (6) 0 (0)

1 3 (17) 62 (42) 9 (30) 3 (9)

2 10 (55) 58 (39) 12 (19) 19 (54)

3 2 (11) 15 (10) 6 (19) 5 (14)

4 3 (17) 13 (9) 2 (6) 8 (23)

Lymph node involvement  
[n (%)]

11 (61) 70 (47) 17 (55) 24 (69)

Tumor node metastasis 
(TNM) stage [n (%)]

NA 0 (0) 1 (< 1) 0 (0) 0 (0)

1 2 (11) 45 (30) 0 (0) 0 (0)

2 9 (50) 73 (49) 0 (0) 20 (57)

3 7 (39) 31 (21) 0 (0) 15 (43)

4 0 (0) 0 (0) 31 (100) 0 (0)

Scarff-Bloom-Richardson 
grade [n (%)]

NA 0 (0) 1 (< 1) 4 (13) 0 (0)

1 0 (0) 7 (5) 4 (13) 0 (0)

2 7 (39) 84 (57) 12 (39) 15 (43)

3 11 (61) 57 (38) 11 (35) 20 (57)

Histologic subtype [n (%)]

NA 0 (0) 0 (0) 2 (6) 0 (0)

IDC 16 (88) 125 (84) 22 (71) 33 (94)

ILC 1 (6) 19 (13) 7 (23) 2 (6)

Others 1 (6) 5 (3) 0 (0) 0 (0)

Lymphovascular invasion  
[n (%)]

6 (33) 27 (21) 12 (39) 9 (26)

NA = not assessed; ER = estrogen receptor; PR = progesterone receptor; HER2 = human epidermal growth factor 2; 

IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma.
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the same manner among primary and metastatic breast 

cancer patient profiles. miR-16 and let-7d were the most  
co-deregulated miRNAs.

The results of the statistical analysis are available in 

Supplementary Table 1.

Design and validation of a diagnostic miRNA 
signature-based model

The analysis and computational methods relied 

on several steps, which made use of the random forest 

algorithm. The random forest algorithm is a supervised 

learning method that operates by building a large ensemble 

of decision trees, where each tree is trained on a bootstrap 

sample from the training data by randomizing the features 

that are selected at each tree node [30].

A methodology somewhat similar to the algorithmic 

solution proposed by Geurts et al. [31] was used as shown 

in Figure 1.
1. Model construction and miRNA signature 
identification

An initial random forests model was built on 

the profiling cohort (86 samples = 30% of the whole 
cohort: 41 individuals with primary breast cancer and 45 

controls) with the normalized expression values of all 188 

miRNAs as features to determine the 25 more discriminant 

miRNAs. To identify the best miRNA signature, all 

combinations of miRNAs that can be defined from these 
25 miRNAs (33554431 in total) were then evaluated using 

ten-fold cross-validation on the same profiling cohort  
(see Materials and methods). 

The best miRNA combination is composed of the 

following 8 miRNAs: miR-16, let-7d, miR-103, miR-107,  

miR-148a, let-7i, miR-19b, and miR-22*. Figure 2 
summarizes the Mann-Whitney U P-values (Figure 2A) 
and relative expression changes (Figure 2B) for these 8 
miRNAs.

An area under the curve (AUC) of 0.85 ± 0.02 was 

obtained when performing the ten-fold cross-validation in 

the profiling cohort.
A threshold value of 0.68 was chosen to derive a 

diagnostic rule from the random forest model. The value 

of 0.68 corresponded to an acceptable trade-off between 

high sensitivity (> 0.9) and satisfactory specificity (± 0.5).
2. Model validation

The validation of our model in a larger cohort (196 

samples = 70% of the whole cohort: 108 individuals with 

primary breast cancers and 88 controls) yielded an AUC 

of 0.81 ± 0.01. Figure 3A represents the receiver operating 
characteristic (ROC) curve obtained by testing the model 

in the validation cohort.

With a threshold value of 0.68, a sensitivity value 

of 0.91 ± 0.01 and a specificity value of 0.49 ± 0.03 were 
obtained.

The validation of the classification model in the 
other cancer groups yielded slightly lower values for 

sensitivity (0.80 ± 0.05 for metastatic breast cancer 

patients) and specificity (0.40 ± 0.08 for breast cancer 
patients in remission and 0.41 ± 0.06 for gynecologic 

cancer patients) (Figure 3B). As shown in Figure 3B, the 
patients with breast cancer in remission and gynecologic 

cancer were classified as the control group.

A comparison between the miRNA signature and 
the established diagnostic methods

Next, we sought to compare the performance of 

the miRNA signature to mammographic screenings and 

CA15.3 assays. 

The accuracy of mammographic screening is greatly 

affected by age. Indeed, young women have dense breasts, 

making the interpretation of mammography more difficult 
(AUC = 0.69 ± 0.05 for women under the age of 50 yr) 

[32]. As shown in Figure 4A, the diagnostic accuracy of 
the miRNA signature does not appear to be affected by 

age because the AUC remains stable at 0.81 in patients 

younger than 50 yr.

CA15.3 is the only biomarker of breast cancer, and 

its accuracy is directly influenced by tumor stage, with 
an AUC ranging from 0.56 in stage I to 0.80 in stage III 

breast cancers [33]. Therefore, CA15.3 is only useful for 

the diagnosis of late stage and metastatic breast cancers. 

Interestingly, tumor stage does not seem to affect the 

signature miRNA performance, remaining stable at 0.81 

from stages I to III (Figure 4B).

miRNA signature does not correlate with breast 
cancer clinicopathological features

The correlations between the expression of the 

8 miRNAs and the following breast cancer clinico-

pathological markers were computed: estrogen and 

progesterone receptor expression, HER2 overexpression, 

tumor size, initial lymph node status, Ki67 index, Scarff-
Bloom-Richardson grade and lymphovascular invasion. 

No significant correlation was obtained using Spearman’s 
test for continuous variables, and no significant difference 
was found using the Mann-Whitney U test for binary 

variables (Supplementary Table 2).

DISCUSSION

Early breast cancer diagnosis is currently 

possible using mammographic screenings. However, 

mammographic screening has the following weaknesses: 

(i) the risk of false positives, with an overdiagnosis rate 

of up to 19%, exposing women to harmful anti-cancer 

therapies and affecting their quality of life; (ii) the risk 

of false negatives, with mammograms missing breast 
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cancer in 17% of cases and in more than 30% of cases 

for women with dense breasts and for women under 

hormone replacement therapy; (iii) X-ray radiation from 

mammograms may be one of the factors that can actually 

trigger breast cancer in high-risk women, e.g., young 

women carrying a mutation in the BRCA genes, who 

require early follow up beginning at 30 years, an age where 

mammography is less effective, and (iv) mammography 

performance is operator dependent (34–36).

Thus, a diagnostic test using a blood sample could 

add useful information. CA15.3, which is the only 

available biomarker for breast cancer, lacks sensitivity in 

the case of primary breast tumors [33].

Based on 8 circulating miRNAs, we designed 

a classification model using a decision tree-based 
ensemble method, which allows primary breast cancers 

to be screened with greater accuracy than mammography. 

Consequently, our 8 circulating miRNA signature may be 

Figure 1: Study design. A diagram describing the random forest-based methodology. The profiling cohort (n = 86) contains 41 patients 

with primary breast cancer and 45 controls. The validation cohort (n = 196) contains 108 patients with primary breast cancer and 88 

controls. The other cancer cohort (n = 96) contains 35 patients with breast cancer in remission, 31 patients with metastatic breast cancer 

and 30 patients with gynecologic cancer.
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extremely useful to help clinicians to identify patients with 

a high probability of breast cancer without using invasive 

procedures.

The 8 miRNA-based diagnostic model shows 

the following interesting characteristics for clinical 

application: (i) this diagnostic test is not affected by age 

and may be useful for monitoring young women at high 

risk for breast cancer, in which mammography is not only 

less effective but also harmful because of irradiation; 

(ii) unlike CA15.3, this diagnostic model is effective 

regardless of tumor stage, which allows for detection 

at an early stage; (iii) this model can detect metastatic 

breast cancers and shows approximately the same class 

prediction distribution for breast cancers in remission and 

for controls (see Figure 3), offering a potential utility for 
monitoring patients; (iv) this study is the first to validate 
the robustness of such a classifier tool with respect to 
gynecologic cancers. Plasma from patients suffering of 

other prevalent cancers in women (cervix, endometrial and 

ovary cancers) [1] were used to check if the diagnostic tool 

could avoid the detection of other types of cancers. Indeed, 

the test specificity on gynecologic cancers is similar to the 
specificity of the control group (see Figure 3).

These aspects were overlooked in previous studies 

that have shown the potential of circulating miRNAs 

as diagnostic tools for breast cancer detection [12–29]. 

Figure 2: The 8 miRNAs present in the diagnostic signature. (A) The results of statistical analyses comparing the expression of the 

8 miRNAs present in the diagnostic signature between different groups. The 8 diagnostic miRNAs were compared between primary breast 

cancer patients, breast cancer patients in remission, metastatic breast cancer patients, gynecologic cancer patients and the controls. P-values 

and Benjamini-Hochberg adjusted P-values were obtained using the Mann-Whitney U test. (B) The relative expression (mean fold change)  

of the 8 diagnostic miRNAs in patients with primary breast cancer, patients with breast cancer in remission, patients with metastatic breast 

cancer and patients with gynecologic cancer compared to controls.
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The signatures that these studies have defined differed 
greatly from one study to another. These discrepancies 

can be explained by the use of different analysis methods, 

sample processing and normalization procedures. In 

the present paper, we show that the appropriate use of a 

subset of miRNAs combined with a specific normalization 
method and classification algorithm yields satisfactory 
results in multiple cohorts. Although decision tree 

ensemble methods have been proven to be efficient for 
the classification of biological samples based on various 
biomarkers [31], to our knowledge, few studies, and never 

in the field of breast cancer, have used random forest 
models with miRNA expression values as input features. 

Two similar studies have nevertheless shown that random 

forest perform better than other supervised learning 

methods using miRNA expression values [37, 38]. 

A second important concern is the normalization 

choice because the results of the relative quantification 
obtained by qPCR are entirely dependent on this process. 

Most of these studies used miR-16 expression alone as a 

reference gene [20, 25, 28, 29]. However, miR-16, which 

is predominantly derived from erythrocytes, has been 

shown to be prone to artificial elevation by hemolysis [18]. 
The use of blood cell-derived miRNAs as housekeeping 

RNA for normalization may be more problematic in cases 

of anemia, a condition often occurring in breast cancer 

Figure 3: Circulating miRNA-based diagnostic tool performance in the validating cohort. (A) The ROC curve of the 

diagnostic miRNA model applied to the validating cohort. The AUC obtained is 0.81. (B) Model outcome distributions for the primary 

breast cancers, controls, metastatic breast cancers, breast cancers in remission, and gynecologic cancers. The x-axis corresponds to the 

model predictions. The dashed line represents the chosen threshold used to compute the sensitivity and specificity values for each cohort. 
The table reports the AUC, sensitivity and specificity in the validation cohort and the sensitivity and specificity in the other cancer cohort. 
The true positive count for the metastatic breast cancers is 25. The true negative count for breast cancers in remission and gynecologic 

cancers is 14.
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patients. Meanwhile, global normalization methods have 

been described to best fit with qPCR analysis [39] but to 
lead to poor performances in discriminating healthy and 

cancer patients [17]. In this study, we compared different 

normalization methods, revealing that the mean of the 

50 most expressed plasma miRNAs is more stable than 

many other normalization methods and allows for good 

discriminating performances. Interestingly, using this 

method, our analyses revealed that miR-16 and miR-103, 

which have been used in other studies as endogenous 

control genes, are differentially expressed in the plasma 

from healthy samples and cancer patients [12, 21].

Most of the 8 miRNAs that are part of the diagnostic 

signature are related to well-described cancer deregulation 

and were demonstrated to be differentially expressed 

in breast cancer tumoral tissues [40–44]. However, 

circulating miRNAs rarely show correlated levels with 

their tumoral expression [26]. In consequence, the miRNA 

composition of the diagnostic signature does not allow any 

conclusion on their biological functions.

Aside from the 8 miRNAs selected for our 

signature, several other combinations, most of which were 

composed of more than 8 miRNAs, yielded comparable 

performances. This finding can be explained by the fact 
that several miRNAs are often deregulated in the same 

manner under certain conditions, thus allowing one 

miRNA to be replaced by another miRNA in a specific 
signature. Regarding independent validation, it can be 

noted that, among these alternative combinations, one in 

particular was made of 11 miRNAs, which were measured 

Figure 4: Comparison of the accuracy between the diagnostic miRNA signature, mammographic screenings and 
CA15.3 assays. (A) While the diagnostic performance of mammographic screenings is weaker in women under 50 yr (32), the AUC of 

the 8 miRNA-based diagnostic model was stable for women both under and over 50 yr. (B) The CA15.3 assay is not useful for the early 

diagnosis of breast cancer. While the CA15.3 AUC increases proportionally to the tumor stage (33), our model performance was stable 

regardless of the tumor stage.
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in the serum of 54 individuals in another independent 

study [12]. The performance of a diagnostic model built 

using this alternative combination has been assessed using 

both our data (plasma) and the dataset GSE42128 from 

Chan et al. (serum), yielding close results (respective 

AUCs of 0.80 ± 0.02 and 0.77 ± 0.07, see Supplementary 

Table 3). Unfortunately, one of the miRNAs present in our 

original signature is absent from the data from Chan et al., 
preventing us from testing the original signature.

Regarding the potential prognostic value of the 

8-miRNA signature, the available follow-up of the cohorts 

is insufficient to determine whether the expression of 
the miRNAs can be correlated with progression-free or 

overall survival. Since there is no correlation between the 

expression of the 8 diagnostic miRNAs and the currently 

used clinicopathological factors of breast cancer, the 

prognostic role of the miRNA signature cannot be 

established on that base. 

In conclusion, we established an accurate miRNA-

based model for the non-invasive screening of primary 

breast cancer. This model also allows the identification 
of metastatic breast cancer and the classification of breast 
cancer patients in remission in the healthy group and 

therefore may be useful for monitoring patients. Moreover, 

the performance of this test is not affected by the age of 

the patient or by the tumor stage.

MATERIALS AND METHODS

Ethical concerns

Ethic approval was obtained from the Institutional 

Review Board (Ethical Committee of the Faculty of 
Medicine of the University of Liège) in compliance 

with the Declaration of Helsinki. All patients signed a 

written informed consent form. This work consisted of a 

prospective study and did not lead to any changes in the 

treatments of enrolled patients.

Plasma samples

Blood samples were withdrawn in 9 ml EDTA 

tubes. Plasma was prepared within 1 h by retaining the 

supernatant after double centrifugation at 4°C (10 min at 

815 × g and 10 min at 2500 × g) and was stored at –80°C. 

The absorbance at 414 nm (ABS
414

) was measured for 

all samples using a NanoDrop to evaluate the degree of 

hemolysis.

RNA extraction and miRNA qRT-PCR

The essential MIQE guidelines were followed 

during specimen preparation [45].

Circulating miRNAs were purified from 100 µl 
of whole-plasma using a miRNeasy Mini Kit (Qiagen, 
Germany) according to the manufacturer’s instructions. 

The standard protocol was modified based on Kroh’s 
recommendations [46]. MS2 (Roche, Belgium) was 

added to the samples as a carrier, and cel-miR-39 and 

cel-miR-238 were added as spike-ins. RNA was eluted in 

50 μl of RNase-free water at the end of the procedure.
Reverse transcription was performed using a 

miRCURY LNA™ Universal RT microRNA PCR, 

Polyadenylation and cDNA Synthesis Kit (Exiqon, 
Denmark). Quantitative PCR was performed according to 

the manufacturer’s instructions on custom panels of 188 
selected miRNAs (Pick-&-Mix microRNA PCR Panels, 

Exiqon). Controls included the reference genes described 

in the text, inter-plate calibrators in triplicate (Sp3) and 

negative controls.

All PCR reactions were performed using an Applied 

Biosystems 7900HT Real-Time PCR System (Applied 

Biosystems, USA). miRNAs with Cq values < 36 were 
considered for analysis.

Data analysis

Analyses were conducted using the 2–ΔCq method 

(ΔCq = Cq
sample

 – Cq
reference gene

) for each sample to obtain a 

normalized expression value [47].

The data were normalized using the ΔCq method 
as recommended by Mestdagh et al. [39]. The mean Cq 

of the 50 miRNAs with the highest mean expression as 

determined in all the patients from all the cohorts was used 

for normalization because it was the most stable reference 

gene according to the GeNorm software. The list of the 

50 miRNAs and the results of the GeNorm analysis are 

available in Supplementary Table 4. The whole processes 

of miRNA signature identification and decision tree 
building were also conducted on datasets normalized 

by 12 alternative methods. The best performances were 

obtained with the normalization by the mean Cq of the 50 

most expressed miRNAs. The alternative normalization 

were: raw data, mean Cq of the 10, 20, 30 or 40 miRNAs 

with the highest mean expression, the mean Cq of the 50 

miRNAs with the highest mean expression minus the four 

miRNAs that are present in the signature; the mean Cq of 

the spike-cel-miR-39 and the U6 small RNA; the mean Cq 

of miR-15b* and miR-125b (the most stable combination 

according to NormFinder); the global mean Cq; miR-16; 
the mean Cq of miR-103 and miR-191; and miR-93.

Furthermore, the delta Cq (miR-23a - miR-451) 
was determined for each sample to evaluate the risk of 

hemolysis as recommended by Blondal et al. [48]. 

Finally, data homogeneity was tested to detect 
outliers. Patients presenting extreme values (mean ± 3 

sigma) were discarded. This operation led to the 

elimination of one patient from the analysis.

Statistical analyses were performed with R version 
3.0.1 (R Core Team (2012). R: A language and environment 

for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3–900051–07–0,  
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URL: http://www.R-project.org/). To compare miRNA 
expression levels, two-sided Mann-Whitney U tests and 

Kruskal-Wallis one-way tests were used. To correlate 
the expression of the 8 diagnostic miRNAs and the 

clinicopathological markers in primary breast cancer 

patients, Spearman’s tests were used for continuous 
variables. Statistical significance was established as 
*P < 0.05 **P < 0.01 ***P < 0.001 or ****P < 0.0001. 

All represented values were adjusted for multiple testing 
using the Benjamini-Hochberg procedure [49]. The 
results of the statistical analyses for selected miRNAs are 

summarized in Supplementary Tables 1 and 2.

Study design

For all steps of the method, an R implementation of 

Breiman’s original random forest algorithm, which was 
provided in the R package randomForest, was used [50]. A 

methodology somewhat similar to the algorithmic solution 

proposed by Geurts et al. was used [31] as shown in 

Figure 1. The different steps are described in detail below.
1. Model building with all miRNAs

An initial random forests model was built on the 

profiling cohort (86 samples: 41 individuals with primary 
breast cancer and 45 controls) with the normalized 

expression values of all 188 miRNAs as features. A 

conservative value of 3000 for ntree  (number of trees in the 

random forest) was chosen for all steps of the construction 

of random forest models using our methodology. Because 

no significant performance change was observed for 
incremental values of mtry  (number of variables randomly 

sampled as candidates at each split), a default value of 

m number of miRNAstry =  was chosen for all steps 

of the construction of random forest models using our 

methodology. A combined ranking for all 188 miRNAs 

based on the model importance metrics MDA (Mean 

Decrease in Accuracy) and MDG (Mean Decrease in Gini) 

was obtained through the construction of this first model. 
2. miRNA signature identification

Variable selection in classification or regression 
methods constitutes a classical problem related to 2 

distinct objectives: (i) Finding relevant variables linked 
to the classifier output, for interpretation purposes  
(in this case, finding an ensemble of miRNAs related to 
breast cancer), (ii) Finding a sufficiently small number 
of variables as to avoid over-fitting, improve model 
performance, and provide more cost-effective models (both 

in terms of computation and implementation) [51, 52]. 

These 2 objectives may often be contradictory, since the 
first one will be directed to highlighting all important 
variables, even if these variables are redundant, while the 

second one aims to limit the number of variables in the 

final model. We are aiming for the second objective. One 
variable selection method for random forests, specifically 

targeting the second objective, is iterative variable 
elimination [38, 53], where variables with the smallest 

importance metric are iteratively discarded until reaching a 

minimum out-of-bag (OOB) error. Based on the definition 
of MDA provided earlier and the R implementation of the 

random forests algorithm, this feature selection method is 

roughly equivalent to the iterative elimination of variables 

with the lowest MDA metric. Another variable selection 

methodology works the other way round, by iteratively 

adding variables in candidate models, based on their 

importance metric, computed on a previous complete 

model, and stopping the addition of variables when the 

model accuracy reaches a maximum [31, 54]. Here, we use 

a more exhaustive wrapper approach, where a large subset 

of m variables is first selected based on the two variable 
importance metrics (the OOB-related importance metric 

MDA, but also the Gini coefficient related importance 
metric MDG) provided by the R implementation of the 

random forests algorithm, and secondly all c possible 

combinations of 1 to m variables from this subset are 

considered as possible features of a potential classifier, 
where c m= −2 1  combinations. This approach thus 

differs in the fact that it constitutes an exhaustive method, 

which will test a very large number of combinations. Each 

of these potential classifiers is cross-validated (with ten 
folds) to determine the variables combination (also called 

“signature”) yielding the best performing model (where 

model performance is measured by the AUC). Since the 

goal of this study is the design of a usable and affordable 

diagnostic tool, a limited value of m = 25 has been chosen 

(leading to c = 33554431). This number corresponds to 

threshold values of 0.001 and 1 respectively for variable 

importance metrics MDA and MDG. This limited 

value of m = 25 constitutes a trade-off between an 

exhaustive testing of the solution space and the time and 

computational limitations related to a diagnostic test.

3. Building the final model

A random forest model was built on the profiling 
cohort using the best performing miRNA subset. This 

classification tool constituted the final diagnostic 
model. The number of trees chosen to build each model 

was determined as in step 1, and a default value of 

m number of miRNAs in the combinationtry = � � � � � �  was chosen 

(i.e. mtry = 3) .

The prediction of the random forest algorithm 

for a sample is a numerical value representing the 

probability for this sample to be part of a specific class 
(case or control). To derive a binary diagnostic rule from 

this numerical score, a specific threshold was picked to 
separate the 2 classes, and the specificity and sensitivity 
values of the corresponding rule were computed.

4. Model validation

Then, the classification tool was validated in a larger 
cohort with similar cases – controls ratio as in the profiling 
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cohort. The total number of samples was 2.3 times greater 

than profiling cohort (196 samples: 108 individuals with 
primary breast cancers and 88 controls).

An AUC was obtained through this validation. 

Sensitivity and specificity values were computed using the 
threshold defined using the profiling cohort.

The classification tool was also validated in a 
separate cohort consisting of 35 individuals with breast 

cancer in remission, 31 patients with metastatic breast 

cancer and 30 patients with gynecologic cancers.

List of abbreviations

3ʹ-UTR = 3ʹ-untranslated region
ABS

414 
= absorbance at 414 nm

AUC = area under the curve

Cq = quantification cycle
DNA = deoxyribonucleic acid

gDNA = genomic DNA

HER2 = human epidermal growth factor 2

LNA = locked nucleic acid

MDA = mean decrease accuracy

MDG = mean decrease Gini

miRNAs = microRNAs

mRNAs = messenger RNAs

NA = not assessed

Ns = non-significant
OOB = out-of-bag

RNA = ribonucleic acid

ROC = receiver operating characteristic
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Transcriptome wide analysis of

natural antisense transcripts

shows their potential role in

breast cancer

„Contraria sunt complementa.
(Opposites are complementary.)

— Niels Bohr

Summary

In this study, we investigated the role of antisense lncRNAs, also called natural
antisense transcripts (NATs) in breast cancer. NATs, which are one of several non-
coding RNAs, are RNA sequences which are complementary and overlapping to those
of protein-coding transcripts (PCT). Based on a cohort of 23 female ER+/HER2-
breast cancer patients, RNA and DNA was extracted both from the tumor and
from adjacent healthy tissue, allowing to use this pairing in the study design. We
generated a list of ’putative’ antisenses, including not only already known and
studied antisenses, but also other non-coding transcripts overlapping protein-coding
genes. Stranded RNA-Seq was performed, to be able to quantify the expression
values of genes and transcripts (both protein-coding and antisenses).

Next, we evaluated how the balance between protein-coding genes and antisenses is
disrupted in breast cancer tumors, both at the global scale, but also while considering
pairs of protein-coding genes and antisenses sharing the same genomic location.

To identify specific antisenses playing a key role in the oncogenic process, three gene
selection methods have been used, yielding lists of antisenses (and their overlapping
protein-coding genes).
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We assessed the enrichment of survival-associated genes in these lists, by using
an external dataset of more than 1000 RNA-Seq samples of female breast cancer
(TCGA).

Our results indicate not only the global disruption involving antisenses in the breast
tumor pathology, but they also highlight a subset of protein-coding genes and
antisenses whose active role should be further investigated and which might become
therapeutic targets in the near future.

My personal contributions to this research project span across several domains: I
took part in the study design as I was involved in all aspects of the project from its
beginning, but I also performed most of the different analytic steps needed as soon
as the sequencing reads were available on computing platforms.

I generated the list of pairs of protein-coding genes and antisenses, I set up the
RNA-Seq computational analysis pipeline, by comparing and configuring all of the
software used for the following tasks: sequencing reads mapping, gene quantification
and annotation, differential expression analysis, differential correlation analysis,
survival analysis. I implemented the varRatio analysis and defined the threshold
used to select genes of interest in that particular method.

Finally, I took part in the writing of the manuscript.
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Abstract  1 

Non-coding RNAs (ncRNA) represent at least 1/5 of the mammalian transcript amount, and about 2 

90% of the genome length is actively transcribed. Many ncRNAs have been demonstrated to play a 3 

role in cancer. Among them, natural antisense transcripts (NAT) are RNA sequences which are 4 

complementary and overlapping to those of protein-coding transcripts (PCT). NATs were punctually 5 

described as regulating gene expression, and are expected to act more frequently in cis than other 6 

ncRNAs that commonly function in trans. In this work, 22 breast cancers expressing estrogen 7 

receptors and their paired healthy tissues were analyzed by strand-specific RNA sequencing. To 8 

highlight the potential role of NATs in gene regulations occurring in breast cancer, three different gene 9 

extraction methods were used: differential expression analysis of NATs between tumor and healthy 10 

tissues, differential correlation analysis of paired NAT/PCT between tumor and healthy tissues, and 11 

NAT/PCT read count ratio variation between tumor and healthy tissues. Each of these methods yielded 12 

lists of NAT/PCT pairs that were demonstrated to be enriched in survival-associated genes on an 13 

independent cohort (TCGA). This work allows to highlight NAT lists that display a strong potential to 14 

affect the expression of genes involved in the breast cancer pathology. 15 
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Introduction  1 

Over the past decade, RNA sequencing technology allowed to discover that the non-coding part of the 2 

genome represents around 1/5 of all transcript amount (1, 2). These non-coding RNAs (ncRNA) are 3 

less conserved between species than protein coding genes, but more than introns and random 4 

intergenic regions (3, 4). It is therefore likely that these non-coding transcripts have biological roles, 5 

which are being progressively deciphered, but still remain largely unknown. Around 30-50% of the 6 

protein coding gene loci are additionally expressing ncRNA in an opposite direction of the protein 7 

coding gene (4, 5). These naturally occurring antisense transcripts, called NATs, have been less studied 8 

than the other classes of ncRNA for technical reasons because their detection and quantification 9 

require to preserve information about the transcript originating strand along the sequencing process. 10 

Indeed, standard RNA sequencing and expression micro-array techniques require double-stranded 11 

cDNA synthesis, which erases RNA strand information, leading to an expression quantification that is 12 

the sum of the expressions of the coding RNA and its corresponding NAT. Commercial kits allowing 13 

to gather this information have only been made available recently, paving the way to high-throughput 14 

studies of stranded RNA sequencing.  15 

NAT expression is subjected to the same expression regulation than other genes, but NATs accumulate 16 

preferentially into the nucleus - associated to chromatin - unlike coding mRNAs which are located into 17 

the cytoplasm. NATs are also found in other cellular compartments such as mitochondria (6, 7). NAT 18 

expression is described in many punctual examples to affect the activity of their sense or neighboring 19 

genes in biological events like cell differentiation and carcinogenesis, distinct molecular mechanisms 20 

being involved (8–11). NATs can regulate gene expression in trans or in cis. Given the fact that both 21 

the sense and antisense transcripts are transcribed from the same genomic region, it is expected that 22 

antisense transcripts behave more frequently in cis than other ncRNAs that commonly function in 23 

trans (11).This last feature means that NATs may regulate their protein coding gene counterpart at the 24 

same locus, which is of great interest from the therapeutic point of view: NATs may thus provide a 25 

unique entry point for therapeutic intervention on targeted genes by the use of ASO (antisense 26 

oligonucleotides) that are drugs already FDA-approved for several diseases (8, 12–14). 27 
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To date, a few studies have been performed at the whole transcriptome scale to investigate the role of 1 

NATs in the context of breast cancers. These studies have demonstrated that pairs of NAT/PCT are 2 

globally deregulated in this pathology (15–17). However, none of those studies compared the whole 3 

transcriptome of paired tumorous and healthy tissues of the same patients, with a technology that 4 

keeps the strand information of the transcripts. Yet, such an experimental design would be needed to 5 

explore if NAT tumor deregulations are cancer-specific, in order to define if they could play a role in 6 

the pathology. Here, we describe the results of such an experimental design, in a cohort of 22 ER+ 7 

breast cancer patients whose paired healthy and tumorous tissues were analyzed by stranded RNA 8 

sequencing. 9 

This work allows clarifying the role played by NATs to regulate their protein coding gene counterpart 10 

on the same locus in the breast cancer pathology and to quantify to what extent this phenomenon is 11 

occurring. We first defined 3 lists of NAT/PCT pairs that are both deregulated between 12 

healthy/tumorous tissues and related to NAT-specific regulations. Next, we demonstrated that those 13 

lists are enriched with survival-associated genes. Finally, we established a list of breast cancer-related 14 

genes probably regulated by their NATs that could be targeted by ASO in a therapeutic objective.  15 

 16 

 17 

 18 
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Material and Methods 1 

Additional information about methods used can be found in the Supplemental Methods 1 2 

Ethical Statement 3 

Tissues were obtained from the Liege University Biobank (N=12) and from the St Vincent Clinic of 4 

Rocourt (N=11), Belgium. This study was approved by the local institutional ethical board (2010/229). 5 

All aspects of the study comply with the Declaration of Helsinki. Patients of the Liege University 6 

Hospital were recruited on the basis of an opt-out methodology. Patients of the St Vincent Clinic of 7 

Rocourt were informed of the research work and provided written informed consent.  8 

Patients and samples 9 

This retrospective study was performed on 23 cryopreserved cancerous and adjacent healthy tissues 10 

from 23 women suffering from estrogen receptor expressing breast cancer. Samples were collected 11 

from 2010 to 2014. One patient was excluded because of poor strand-specificity of the RNA-Seq. The 12 

clinical and pathological parameters of the patients included in the final analysis were recorded and 13 

summarized in Table 1.  14 

A summary of the experimental design is depicted in Figure 1. 15 

Stranded RNA sequencing 16 

RNA-Sequencing libraries for 22 breast tumors and paired adjacent tissues were constructed from 500 17 

ng of total RNA, using the TruSeq® Stranded Total RNA kit and Ribo-Zero rRNA Removal kit. 18 

2x100bp paired-end stranded RNA sequencing was performed on an Illumina HiSeq2000 apparatus, 19 

with a mean of 8.26E+09 bases sequenced for each sample (4 samples/line). Kits and apparatus were 20 

from Illumina, The Netherlands. 21 

CGH array 22 

Array comparative genomic hybridization was performed in the healthy and tumorous tissues of the 22 23 

patients using the Agilent 60K microarray platform (G4827A-031746; Agilent Technologies, Santa 24 

Clara, CA, USA) according to the manufacturer's instructions.  25 

Gene expression quantification by RNA-Sequencing 26 
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A quality control of the sequenced reads has been performed with the FastQC software (v. 0.11.2; 1 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing reads were mapped to the 2 

Human Genome hg19 GRCh37-75 (Ensembl) using the Star 2.4.1c software (18). Mapping quality 3 

was assessed with the Picard RnaSeqMetrics tool of the Picard software suite (v. 1.127; 4 

http://broadinstitute.github.io/picard/ ) using default parameters. The results are available in S1-5 

Supplemental File 1. Read counts assignment was performed with the htseq-count tool of the HTSeq 6 

software suite (v. 0.6.1) (19). Data quality assessment was performed by computing the strand 7 

specificity (ratio of sequencing reads mapping to the incorrect strands) of all samples with htseq-8 

count, leading to the removal of one patient with aberrant strand specificity. The DESeq2 software (v. 9 

1.10.1) was used to normalize read counts, estimate dispersion, perform variance stabilizing 10 

transformation, and perform independent filtering by using the mean of normalized counts as filter 11 

statistic, thereby adjusting the filtering threshold at 33%, following the standard workflow (20). 12 

Variance-stabilization performance was assessed by producing MA-plots of log2 fold-change versus 13 

mean expression with DESeq2. A search for outliers was performed by computing Cook’s distances 14 

for every gene and every sample with DESeq2 (S2/S3/S4/S5/S6-Supplemental File 1). A principal 15 

component plot was performed to assess the appropriate separation between the 2 sample classes (S7-16 

Supplemental File 1). All aforementioned quality and performance measures yielded acceptable results 17 

for all remaining samples.  18 

External dataset used for RNASeq gene expression comparison. 19 

Gene expression variations were retrieved from de GEO Dataset GSE65216 20 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65216), which is an expression study by 21 

micro-array (Affymetrix) of the Maire’s breast cancer cohort (21). 22 

Definition of the protein-coding/antisense pairs 23 

The list of pairs of protein-coding genes and their corresponding antisense has been generated based 24 

on the human genome assembly and gene annotation GRCh37 (release 75) from Ensembl (22). To be 25 

included in the list, pairs of genes have to fulfill the 3 following conditions: overlapping coordinates; 26 
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opposite strands; one of the two genes has to have the protein_coding biotype, while the other can 1 

have any of the following biotypes: 3prime_overlapping_ncrna, antisense, IG_C_pseudogene, 2 

IG_V_pseudogene, lincRNA, misc_RNA, polymorphic_pseudogene, processed_transcript, pseudogene, 3 

sense_intronic, sense_overlapping, snoRNA, snRNA. The reasoning behind including all non-4 

protein_coding biotypes as putative antisenses is that the Ensembl annotation of antisenses is limited 5 

to already validated antisenses, and it might thus miss out previously unknown antisenses. 6 

NAT/PCT Gene list selection methods  7 

1) DiffCor list: Differential correlation analysis between pairs of protein-coding and antisense 8 

transcripts was performed with the DGCA software (v. 1.0.1) (23). Pairs of protein coding/antisense 9 

genes whose correlation is significantly different between normal and tumor samples (adjusted p-value 10 

< 0.05) and whose correlation class differs between tumor and normal samples (ie. we removed the 11 

0/0, +/+, -/- classes) have been selected. 12 

2) NATDiffExp list: Differential expression analysis between all tumor and healthy samples was 13 

performed with the DESeq2 software (v. 1.10.1) for all genes, following the standard multi-factor 14 

workflow for paired samples. Pairs of protein coding/antisense genes where the antisense was 15 

significantly differentially expressed (adjusted p-value < 0.05) between normal and tumor samples 16 

have been selected. 17 

3) varRatio list: The read counts ratio variation analysis had been performed as follows: let us define 18 

the variation of read counts ratio (varRatio) for each pair of NAT/PCT genes as 19 

varRatio= tumoral readcountsratio
normal read countsratio  where  20 

tumoral read counts ratio=  ∑ tumor read countsantisense

 ∑ tumor read countsprotein coding  and 21 

normal read counts ratio=  ∑ normal read countsantisense

 ∑ normal read countsprotein coding  22 

Pairs of NAT/PCT genes corresponding to extreme values of the varRatio distribution have been 23 

selected by applying a threshold (mean ± standard deviation) to the log-transformed distribution of the 24 
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varRatios (S8-Supplemental File 1). 1 

For all three gene list selection methods, pairs of genes where either the protein-coding or the 2 

antisense was expressed in less than 7 tumor samples or 7 healthy samples have been discarded. 3 

Survival analysis 4 

All protein-coding genes of the 3 gene lists have been tested for association with survival on an 5 

external dataset of 1066 RNA-Seq samples from the tumors of female breast cancer patients (Package 6 

R TCGA Biolinks; (24)). Association with survival was recorded when the p-value of a log-rank test 7 

was inferior to 0.05. The ratio of genes associated with survival in each list has been compared with 8 

the same ratio computed with a list of randomly selected protein-coding genes. 9 

 10 
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Results 1 

The role played by NATs on the expression regulation of their corresponding coding transcripts is still 2 

largely unknown, as well as if this potential regulation could play a role in the ER+ breast cancer 3 

pathology. Our study experimental design used to answer this question at the whole genome scale is 4 

depicted in Figure 1. Twenty-two tumorous tissues of ER+ breast cancer patients, as well as their 5 

paired adjacent healthy tissues, were subjected to strand-specific RNA Sequencing and DNA copy 6 

number analysis by CGH array. The patient characteristics are summarized in Table 1. The cohort 7 

contains only tumors larger than 20mm, and is equally divided between luminal A and B sub-types, 8 

and between highly (Ki67>19%) and moderately (Ki67<19%) proliferating tumors. Most of them 9 

present a Bloom grade of 2 and 3.  10 

RNA-Seq Validation 11 

The combined analysis of the DNA copy number variations and modifications of RNA transcripts 12 

expression levels between tumor and healthy tissues validates our RNA-Seq analysis: the overall 13 

expression levels of coding gene transcripts inside genomic amplification or deletion newly acquired 14 

in the tumor were respectively increased and decreased, as expected (Figure 2 A).  15 

Moreover, the gene expression changes between healthy and tumor tissues obtained in our RNA-Seq 16 

dataset were compared with those obtained in an independent dataset (GSE65216). Gene expression 17 

variations between 10 mammary healthy tissues and 22 ER+ tumors (11 luminal A and 11 luminal B) 18 

were extracted using Geo2R (25). The expression fold-change of genes that were found to be 19 

differentially expressed with an adjusted p-value <0.05 between healthy and tumoral tissues in both 20 

our and the GSE65216 datasets were compared, and present an average Spearman correlation 21 

coefficient of 0.613 (p-value<0.001). Moreover, 76.6% of those genes were differentially modulated in 22 

the same direction (Figure 2 B). At a smaller scale, some RT-qPCR experiments were performed on 23 

the RNA samples that were used for our RNA-Seq study to confirm variations of several transcripts 24 

expression between tumor and healthy tissues. Among others, the downregulation in tumors of the 25 

ADAMTS9 tumor suppressor and its NAT, ADAMTS9-AS2, were confirmed by RT-qPCR (Figure 2 26 

C).  27 
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NAT expression accounts for 17% of their coding counterpart in healthy tissues and increases to 1 

26% in tumors. 2 

We next defined the pairs of protein-coding genes and their corresponding antisenses as detailed in the 3 

material and methods section. This list can be found in Supplemental File 2 and contains 9632 4 

NAT/PCT pairs where at least one patient has a non-null expression for PC or AS, either in normal 5 

tissue or in tumor. As 19846 coding transcripts were expressed in mammary tissues, 49% of coding 6 

transcripts have a concomitant corresponding NAT expression. Globally, NAT read counts represent 7 

17% of their coding counterparts in healthy tissues and 26% in tumors (Table 2), suggesting a global 8 

increase of the expression levels of NATs in mammary tumors. Moreover, the average read counts 9 

ratio between PCT/NAT gene pairs expressed simultaneously by a locus is 1544 in healthy tissues and 10 

1013 in tumors (Supplemental File 2). 11 

Unexpectedly, we observe that the fold change distributions of NATs present both in genomic 12 

amplifications and deletions are shifted towards higher fold-changes than the corresponding 13 

distributions based on protein-coding genes (Figure 3 A).  14 

Based on the levels of expression in the different tissue types, we chose to focus on NAT/PCT pairs 15 

where both the PC and the AS were expressed in at least 7 out of the 22 patients, both in the tumor and 16 

the healthy tissue. This represents more than 60% of the total read counts of NAT/PCT pairs (Table 2). 17 

In this group of 4884 genes pairs, NAT expression is greatly increased and accounts for 31% of their 18 

coding counterpart in healthy tissues and 47.8% in tumor. This gene sub-group contains PC genes that 19 

display the stronger potential of being regulated by their NAT counterparts.  20 

Positive correlation of expression between NAT and their corresponding PCT are created in 21 

tumorous tissues. 22 

In order to highlight newly appearing or disappearing correlations between NATs and their 23 

corresponding PCTs in the tumor, differential correlation analysis between all pairs of PCTs and NATs 24 

was performed with the DGCA software (v. 1.0.1) (23). Complete results can be found in 25 

Supplemental File 2, showing a global positive correlation of expression between NATs and their 26 

corresponding PCTs: the mean Spearman correlation coefficients are 0.431 and 0.533 respectively in 27 
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healthy tissues and tumors when a significant correlation is observed (p-value < 0.05), namely in 20% 1 

of the NAT/PCT pairs. The number of significantly correlated NAT/PCT pairs does not differ in 2 

healthy and tumorous tissues. A positive mean z-score (0.460) is observed in case of significant 3 

differential correlation of NAT/PCT between tumor and healthy tissues (p-value < 0.05), meaning that 4 

globally, in the 11% of NAT/PCT pair correlations that are deregulated in tumors when compared to 5 

healthy tissues (567/4884 pairs), the correlations become more positive. The proportion of the 6 

different classes of differential correlations between tumors and healthy tissues is depicted in Figure 3 7 

B, highlighting the fact that mainly positive correlations of expression between NATs and their 8 

corresponding PCTs are created, or lost in tumorous tissues. Very few inversions of correlation were 9 

observed. Some examples of NAT/PCT pairs presenting deregulated correlation of expression in the 10 

tumor tissue are presented in Table 3 showing that genes that are well known in the breast cancer field 11 

are displaying deregulated correlation of expression with their antisense transcripts. 12 

Protein coding genes exhibiting deregulated corresponding NAT expression in tumors are 13 

preferentially related to survival of breast cancer patients  14 

Three different gene selection methods were used to extract NAT/PCT pairs potentially related to the 15 

breast cancer pathology out of the 4884 pairs. 16 

Firstly, the previously described DiffCor is based on the differential correlation of NAT/PCT read 17 

counts between healthy and tumors tissues. A list of NAT/PCT pairs whose correlation is significantly 18 

different between normal and tumor tissues (p-value < 0.05) and whose correlation class differs 19 

between tumor and normal tissues (ie. 0/0, +/+, -/- classes are removed) has been selected and contains 20 

441 NAT/PCT pairs.  21 

The second method is based on the differential expression of the NATs between tumors and healthy 22 

tissues. A list of 738 NAT/PCT pairs where the NATs were significantly differentially expressed 23 

(adjusted p-value < 0.05) between normal and tumor tissues has been determined.  24 

The third method is based on the variation of the NAT/PCT ratio between healthy and tumor tissues, 25 

and allows to define a third list, called VarRatio, which contains NAT/PCT pairs with extreme values 26 

on the distribution of the VarRatio (S8 - Supplemental File 1). This VarRatio list can be subdivided in 27 
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leftmost and rightmost parts. Leftmost, 610 NAT/PCT pairs have a PCT/NAT ratio that decreases in 1 

the tumor either because of a down-regulation of the PCT expression, or an up-regulation of the NAT 2 

expression or both; and the reverse is observed for the 540 NAT/PCT pairs on the rightmost part of the 3 

distribution. 4 

The 3 lists of genes can be found in the Supplemental File 1 (S9 to S12 – Supplemental File 1) and as 5 

expected, many NAT/PCT pairs appear in several of those lists, which contains a total of 1784 unique 6 

NAT/PCT pairs deregulated in breast cancers. 7 

To ascertain if the protein coding genes of the DiffCor, NATDiffExp, and VarRatio lists are implicated 8 

in the breast cancer pathology, their association with survival was computed based on the RNA-Seq 9 

samples from the TCGA dataset. Each of these three lists present a proportion of genes associated with 10 

survival in the TCGA dataset greater than the proportion obtained in a list of randomly chosen protein 11 

coding genes (Table 4), meaning that PCT exhibiting deregulated corresponding NAT expression in 12 

tumor are enriched in genes related to survival of breast cancer patients. A Pearson’s chi-squared test 13 

yielded statistically significant p-values for each of the 3 lists when compared to a list of randomly 14 

chosen protein coding genes. 15 

72 cancer genes present a deregulated profile of NAT expression in breast cancer samples. 16 

When the Cancer Gene Census list of genes from the COSMIC database 17 

(http://cancer.sanger.ac.uk/census) was compared with the content of our 3 lists of genes that are 18 

probably regulated by their NATs and implicated in the breast cancer pathology, 72 genes were found 19 

in common (S13 - Supplemental File 1). This list contains cancer genes that could be targeted by ASO, 20 

designed to interact with the corresponding NATs of those genes, in order to specifically regulate their 21 

expression. 22 

 23 
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Discussion 1 

Breast cancer constitutes a public health problem: around 1out of 8 women will suffer from it during 2 

their lifetime in industrialized countries. The most frequent subtype is the estrogen receptor expressing 3 

breast cancer (ER+/HER2-), with 75% of occurrences. In case of primary disease, most patients are 4 

treated by surgery with or without radiotherapy and endocrine therapy. However, a large number of 5 

those cancers will suffer from a relapse and develop metastases - a major life-threatening event which 6 

is strongly associated with poor outcome - and require chemotherapy in case of symptomatic visceral 7 

disease. New therapies are thus searched as well as biomarkers that would give a better prediction of 8 

the risk of relapse. Our study explores the still new field of antisense transcription to define cancer 9 

gene lists, and will lead to further works to define predictive markers and/or tailor targeted treatment 10 

by antisense oligonucleotides (ASO) (14). 11 

This is the first time that a whole transcriptome strand-specific RNA-Seq study focusing on the 12 

antisense transcription is performed in paired tumor and healthy mammary tissues. This experimental 13 

design allows to detect deregulation of NAT expression that occurs in cancer tissues, and to 14 

statistically connect them with the changes of the corresponding coding transcript expression. In 15 

particular, we revealed that many positive correlations between NATs and their PCT counterpart were 16 

appearing or fading in the tumor, suggesting newly acquired or lost regulations of the protein-coding 17 

transcripts in the cancerous tissues. Further functional molecular studies will however be needed to 18 

confirm the existence of such regulations of the PCTs by their NATs in the list of cancer gene pairs 19 

that were highlighted in this work. 20 

The difference in fold-change between NATs located in genomic alterations and their coding 21 

counterparts, with NATs showing higher fold-changes, as well as the significant increase in NAT 22 

expression in tumors tend to indicate that NATs may be subject to a particular activating mechanism 23 

specific to tumors (Figure 3 A, Table 2).  24 

Moreover, the association of these NATs with survival, which was evaluated through the use of their 25 

protein-coding counterparts as proxy in a large independent cohort, shows that the dysregulation 26 

observed within the landscape of NATs is not merely a random byproduct of the tumoral process. 27 
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Analyses were conducted to explore the relationship of the PC and AS genes with known prognostic 1 

factors, but no significant results were found. In the same way, enrichment analyses in pathways genes 2 

were conducted without any noticeable results. 3 

Several studies have already explored the role of antisense transcription in breast cancer (15–17). 4 

Grinchuk et al. analyzed NAT/PCT pairs that are deregulated in breast cancer in order to define 5 

pathways in which they are particularly involved, and they defined NAT/PCT-based prognosis 6 

signatures. However Affymetrix microarray datasets were the support of this work, and this technique 7 

is not intrinsically strand-specific (15). Moreover, mammary normal and tumoral analyzed tissues 8 

were not matched. Balbin et al. performed a large scale, genome wide, stranded RNA-Seq study on 9 

376 cancers samples with, among them, 60 primary breast cancers (16). But as in Grinchuck’s study, 10 

tumorous tissues were not matched with healthy ones and in consequence, these studies did not 11 

explore, patient by patient, if the NAT/PC expression correlations were already present in the normal 12 

tissue, or if they were newly acquired in the tumor. This particularity in our experimental design did 13 

allow highlighting the fact that NAT expression is increased in tumorous tissues when compared to 14 

their coding counterpart. Indeed, the proportion of NAT reads counts in NAT/PCT pairs is globally 15 

raised in tumors when compared to healthy tissues. 16 

As Balbin et al. have stated before, at any locus where PCT and NAT are simultaneously transcribed, 17 

the PCT is expressed around 1000 times more than the NAT, but we have additionally observed that 18 

this difference of expression is lower in tumors than in healthy tissues. We also measured that globally, 19 

10% of the transcripts were coming from the antisense strand in healthy tissues and that this 20 

proportion is increased to 13% in tumors (8% were described by Balbin et al.). However, some 21 

patients present a much higher increase of NAT/PCT proportion in the tumor than others. This 22 

heterogeneity in NAT expression deregulation across patients could be used to stratify patients into 23 

subgroups of different prognosis. One limitation of our study is the small size and the short follow-up 24 

time of our cohort, which did not allow performing such type of analysis. 25 

Our results also confirm the observation by Grinchuk et al that the expression correlations between 26 

NAT and PCT were different in tumors when compared to unrelated healthy tissues. We refined this 27 
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observation by using paired tissues of the same patient, and showed that globally these correlations 1 

become more significant and more positive in the tumors. Moreover, we highlighted the gene pairs 2 

where potential new PCT/NAT expression regulation occurs in cancerous tissues. After having 3 

performed a survival analysis with gene expression data from an external cohort (TCGA), it appears 4 

that these NAT/PCT gene pairs were also enriched in survival-associated genes, suggesting that the 5 

opposite strand transcription regulation might play a role in the breast cancer disease.  6 

Therefore, our report opens a new field of investigation in cancer and indicates that NAT expression is 7 

often increased in cancer samples as compared to matched normal tissues. The relevance of this 8 

observation for coding gene expression, cancer biology, prognosis and treatment will need to be 9 

determined in specific and large cohorts of paired samples. 10 
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Figure Legends 1 

Figure 1: Study workflow.  2 

RNA and DNA were simultaneously extracted from 23 breast cancer ER+/HER2- tumors and their 3 

paired adjacent healthy tissues. Strand-specific paired-end RNA sequencing and comparative genomic 4 

hybridization (CGH) were performed. Quality control steps and RNA-Seq validation were performed 5 

and lead to the elimination of one patient because of a poor strand specificity of this sample. This 6 

strategy allowed to study differential expression of NATs and PCTs between tumors and healthy 7 

tissues, and to perform differential correlation analysis of NAT/PCT pairs. Three lists of genes with 8 

deregulated NAT expression in the tumors that could potentially affect their corresponding PC 9 

expression were extracted, and the coding genes they contain were subjected to survival analysis with 10 

an external cohort (TCGA).  11 

Figure 2: Validation of RNA-Seq.  12 

A. Fold change distributions of genes, as determined by RNA-Seq, which are located in somatic copy-13 

number alterations (amplifications or deletions), as determined by CGH. The distinct curves show a 14 

clear effect of the copy-number alterations on the gene expression (fold-changes). As expected, genes 15 

located in genomic amplified regions in the tumor showed increased expression, and conversely. B. 16 

Gene expression fold-changes between tumor and healthy tissues obtained in the current RNA-Seq 17 

study were compared to those described in an external Affymetrix micro-array dataset GSE65216. 18 

This comparison showed a global concordance of the results, with a Spearman correlation coefficient 19 

of 0.613 (p-value < 0.001). C. The relative expression of the protein coding ADAMTS9 and its NAT, 20 

ADAMTS9-AS2, in tumors and healthy tissues obtained by RNA sequencing and by RT-PCR were 21 

compared. The RT-qPCR values were normalized by the expression of the endogenous control gene 22 

B2M. [p-value <0.001 (***)].  23 

Figure 3: A. Fold-change distributions of NAT present in genomic amplifications and deletions.  24 

NAT expression values are shifted towards higher fold-changes than the corresponding distributions of 25 

their protein coding genes. B. Schematic representation of the proportion of the different classes 26 

of differential correlations between tumors and healthy tissues. Mainly positive correlations of 27 
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expression between NAT and their corresponding PCT are created, or lost in tumorous tissues. The 1 

numbers indicated in the graph are the numbers of NAT/PCT pairs in this category; +/+ = significant 2 

positive correlation between NAT and PCT exists in the adjacent healthy tissue and is conserved in the 3 

tumor; +/- = significant positive correlation between NAT and PCT exists in the adjacent healthy tissue 4 

and becomes negative in the tumor; +/0 = significant positive correlation between NAT and PCT exists 5 

in the adjacent healthy tissue and is lost in the tumor; -/- = significant negative correlation between 6 

NAT and PCT exists in the adjacent healthy tissue and is conserved in the tumor; -/+ = significant 7 

negative correlation between NAT and PCT exists in the adjacent healthy tissue and becomes positive 8 

in the tumor; -/0 = significant negative correlation between NAT and PCT exists in the adjacent 9 

healthy tissue and is lost in the tumor; 0/0 = no significant correlation between NAT and PCT exist, 10 

nor in the adjacent healthy tissue nor in the tumor.  11 
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Tables. 1 
 2 
Table 1. Patient clinicopathological characteristics 3 

 4 

Clinical Features Criteria Patients

Age (years)  
Median 62.9 years 
Range 43-83 years 

Tumor size (mm) 
> 20 N=22 
< 20 N=0 

Ki 67 (%)  
< 19 N=11 
≥ 19 N=10 
Unknown  N=1 

Histology 
IDC + DCIS N=7 
IDC N=15 

Bloom grade 
I N=4 
II N=9 
III N=9 

T (x to 4) 
1c N=10 
2 N=11 
3 N=1 

N (x to 3) 

0 N=13 
1a N=5 
1c N=1 
2a N=2 
3a N=1 

M (0 or 1) 
0 N=22 
1 N=0 

Molecular subtype 
ER+/HER2- N=22 
Luminal A N=11 
Luminal B N=11 

Meantime follow-up Month 43.36 
 5 
 6 

92 Chapter 4 Transcriptome wide analysis of NATs shows their potential role in breast cancer



23 
 

Table 2: Distribution of the relative expression intensities of NAT and their corresponding PC 1 

among the 9632 NAT/PC pairs. 2 

This study was focused on NAT/PCT pairs where both the PCT and the AS were expressed in at least 7 3 

out of the 22 patients, both in the tumor and the healthy tissue. This group of 4884 gene pairs contains 4 

60% of the total reads counts, and the NAT/PCT ratio expression is increased in tumors.  5 

 6 

7 
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Table 3 : Examples of spearman correlations between NAT and cancer-associated coding genes that 1 

are altered in tumors when compared to adjacent healthy tissues. 2 

Coding 
Gene 
Name 

NAT_ID_Ensembl NAT-Name

NAT/PCT 
spearman 
correlation 
adj healthy 
tissue 

NAT/PCT 
cor. p-val 
adj 
healthy 
tissue 

NAT/PCT 
spearman 
correlation 
tumor 
tissue 

NAT/PCT 
cor. p-val 
tumor 
tissue 

Classes

CAMTA1 ENSG00000225126 
RP4-
549F15.1 -0,09 6,82E-01 0,70 3,06E-04 0/+

CDKN2A ENSG00000240498 
CDKN2B-
AS1 0,33 1,32E-01 0,75 5,17E-05 0/+

CTCF ENSG00000237718 AC009095.4 -0,25 2,63E-01 0,58 4,96E-03 0/+

GNA11 ENSG00000267139 AC005262.3 -0,14 5,49E-01 0,48 2,28E-02 0/+

ACSL6 ENSG00000234758 AC034228.4 -0,35 1,07E-01 0,44 4,01E-02 0/+

HOXC11 ENSG00000228630 HOTAIR 0,08 7,29E-01 0,62 1,87E-03 0/+

ZFHX3 ENSG00000259901 
RP5-
991G20.4 -0,32 1,44E-01 0,50 1,71E-02 0/+

PPP6C ENSG00000232630 PRPS1P2 -0,19 4,05E-01 0,45 3,41E-02 0/+

RAP1GDS1 ENSG00000214559 
RP11-
323J4.1 0,16 4,78E-01 0,91 3,99E-09 0/+

UBR5 ENSG00000246263 KB-431C1.4 0,16 4,65E-01 0,81 4,16E-06 0/+

UBR5 ENSG00000272037 KB-431C1.5 0,24 2,91E-01 0,73 9,92E-05 0/+

WT1 ENSG00000183242 WT1-AS 0,39 7,09E-02 0,89 4,46E-08 0/+

HNF1A ENSG00000241388 HNF1A-AS1 0,02 9,18E-01 0,67 6,87E-04 0/+

AFF1 ENSG00000235043 TECRP1 0,76 3,74E-05 0,25 2,69E-01 +/0

BRCA1 ENSG00000240828 RPL21P4 0,63 1,87E-03 -0,04 8,57E-01 +/0

CAMTA1 ENSG00000269978 
RP11-
338N10.3 0,82 3,41E-06 0,14 5,36E-01 +/0

CEBPA ENSG00000267727 
CTD-
2540B15.7 0,79 1,31E-05 -0,01 9,55E-01 +/0

MYH11 ENSG00000263065 AF001548.6 0,66 7,94E-04 0,03 8,95E-01 +/0

MSH6 ENSG00000224058 AC006509.7 0,57 5,89E-03 -0,10 6,58E-01 +/0

MSH2 ENSG00000236558 AC138655.6 0,76 3,74E-05 0,16 4,88E-01 +/0

HLF ENSG00000263096 
RP11-
515O17.2 -0,49 1,95E-02 0,14 5,29E-01 -/0
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MAP2K1 ENSG00000269999 
CTD-
3185P2.2 -0,52 1,26E-02 0,10 6,62E-01 -/0

GNAS ENSG00000235590 GNAS-AS1 -0,60 3,22E-03 0,26 2,41E-01 -/0
 1 

 2 
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Table 4: PC genes exhibiting deregulated corresponding NAT expression in tumor are 1 

preferentially related to survival of breast cancer patients  2 

Protein coding genes of the 3 gene lists DiffCor, DiffExp and VarRatio (left and right) were tested for 3 

association with survival by means of a TCGA RNA-Seq dataset of breast cancers. The percentage of 4 

genes associated with survival in each list has been compared with randomly selected protein coding 5 

genes. 6 

PC Gene list DiffCor DiffExp VaRatio  
Left 

Varatio   
Right Random 

Nb genes in list 441 738 610 540 582 

Nb genes also present in 
TCGA dataset 440 729 604 533 582 

Nb genes w/ log-rank  
p-val <= 0.05 71 118 96 84 56.4 +- 7.5 

Genes % w/ log-rank p-
val <= 0.05 16,1% 16,2% 15,9% 15,8% 11.3 ± 1.6 % 

Average log-rank p-val 0,392 0,387 0,388 0,391 0.489 ± 0.016 

 7 
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5

Discussion

„Ideas are like rabbits. You get a couple and learn
how to handle them, and pretty soon you have a
dozen.

— John Steinbeck

Human cancer may be the disease of the decade, if not of the century.
Therefore, through its complexity, there is a large diversity of entry points by which
we can chose to study it, a tally of aspects on which there is still a lot of work to be
done.
Picking only a single aspect and focusing one’s work on it might yield impressive
results. Or it might not.
On the other hand, opting to focus on different problems might lead to the potential
reuse and swapping of methods between related domains, it might lead to the
emergence of a whole which is greater than the sum of its parts. Or it might not.

I chose to commit myself to multiple projects, hoping that by doing so I could dis-
seminate techniques and procedures from various fields into associated domains.

Reflecting on this choice, one should be able to ask oneself:
"Have I been able to build bridges?"
"Have I used or developed methods in one field which might be useful in another
one?"
"Is my work merely the addition of unrelated projects, or am I able to extract
something more out of this enumeration?"

Normalization

There are obvious similarities between these projects.

At first, the need to normalize the data.
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In chapter 2, the sequencing reads coverage (and its ratio) is used as a proxy for
the genomic copy-number. We used the hypothesis that such coverage is constant
along an exon (ie. exons are either in or out of a CNV, but no breakpoint intersects
an exon), and we thus started from the coverage values for each of the 201 030
sequenced exons, instead of individual values for each of the 3 billion base pairs of
the human genome.

In chapters 3 and 4, the unit considered is the "gene" (in a broad sense, as it
includes non-protein coding transcribed units) and its expression, but not the single
base either.

For these 3 studies, different normalization approaches are considered.

In chapter 2, instead of performing an intra-sample normalization, the coverage of
each exon of one sample is normalized by the corresponding value from a reference
sample. The hypothesis here is that the potential biases which would require a
normalization are better addressed through the use of a reference sample which has
been through the same protocol and which should thus suffer from exactly the same
biases, essentially originating from the exome library preparation kit and its target
capture protocol and the sequencing process.
In [168], Sathirapongsasuti et al. still divide the raw read counts by the total
number of reads in the samples though, to mitigate the potential effect that an
overall increase in local counts might have, due to the increase in total depth-of-
coverage. This read count ratio is then adjusted so that the exome-wide median is 1,
which is what we might expect if most of the chromosome locations of the tested
sample do not harbor a CNV. One could wonder if such an adjustment is wise in the
case of samples showing a large number of duplications.

In chapter 3, due to the nature of the variable measured, the very low variation
between samples, and the goal of the study, the choice of normalization method is
critical. That’s the reason why 12 alternative normalizing methods were tested. Even
though the normalization performed with the 50 miRNAs with the highest mean
expression was the most stable one, it should be noted that some of the alternatives
were very close in terms of performance, probably due to the fact that the variations
measured are very small, both for the whole dataset and for the miRNAs used as
normalizers. To be certain about our choice of normalizing method, the 12 other
methods were not only compared with regards to their stability as a reference set,
but we also performed the whole processes of miRNA signature identification and
model building up to obtaining final AUC values.

One could argue that by testing only 13 normalizing methods, we did not explore
all the solution space for this particular step of our study. However, given the
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performance obtained with the alternative methods, and considering that these
alternative methods present a good sampling of what one would expect to be the
best performing normalizers, we are very confident about our choice of normalizing
method.
Of course, given enough computational power and time, the best thing to do would
be to sweep the whole solution space. However, as of today, and considering that
this would add an additional layer of complexity to the already computationally
intensive steps of our method, such an endeavour remains intractable.

In chapter 4, the DESeq2 software package was used for several steps of our analysis
process, including normalizing read counts from our RNA-Seq dataset. However,
although the data is not shown, we compared the final list of differentially expressed
genes given by the DESeq2 pipeline with lists obtained with a different normalization
method, namely reads per kilobase of transcript (RPKM), and a different statistical
test (Mann-Whitney U). This comparison showed that 70% of differentially expressed
genes were found in common.

The theoretical assumptions underlying these different methods tend to favor the
DESeq2 normalization method and statistical test, as they integrate inter-sample
relationships through the use of size factors and gene-specific normalization factors,
through the use of a negative binomial distribution to model the read counts.

Unfortunately, it is the very large difference in terms of variables sampled in chapter
3 (188 miRNAs) and chapter 4 (> 60 000 "genes") which prevents the switching
of normalizing methods between these studies. However, it would be interesting to
see how normalizing methods from one study fare with data having the value range
from the other study, as read counts in RNA-Seq datasets typicaly have extremely
large ranges, while miRNAs levels assayed by RT-qPCR have a very small range.

Selection

The issue of feature selection, in a broad sense, is integral to both chapter 3 and
chapter 4.
In chapter 3, we needed to select a handful of miRNAs to build a "simple" model,
while in chapter 4, the product of our gene selection process constitutes a result in
itself.

These two settings are thus very different, however nothing theoretically prevents us
from using the random forests based feature selection method developed in chapter
3 to extract a list of genes of interest as we did in chapter 4, since our RNA-Seq
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dataset is also a case/control dataset, albeit with far more features and less samples
than our circulating miRNAs dataset; but since random forests are notoriously well
suited for such datasets, it would be worth the try.

In the other way round, we might conjecture about the use of the gene selection
methods used in chapter 4 for the feature selection step of chapter 3. However,
we can directly dismiss the gene selection methods involving pairs of genes (ie. the
differential correlation based method, and the varRatio method), as our miRNA
dataset doesn’t have paired features.

Future developments

A potential improvement to [168], which might have an effect on the results shown in
chapter 2, would be to perform the normalization and adjustment steps mentioned
earlier chromosome by chromosome instead of doing them on the whole exome
scale.

Additionally, since [168] performs circular binary segmentation, instead of starting
from the coverage values for exons in chapter 2, we could start from coverage values
for each single position covered or for a sliding windows of 10-20 bp, although it
would add some time to the computation of the read count ratios.

These two additional developments could potentially improve the results obtained.
However, the most interesting future development would probably be to verify if CNV
profiles obtained with whole genome data perform better than profiles obtained with
exome data, in terms of their distance metric computed with CGH-based profiles.
Another compelling information would be to see if whole genome-based CNV profiles
are closer to exome-based ones or to CGH-based ones: ie. do the differences between
profiles arise because of the technique used to obtain said profile (sequencing vs.
hybridization) or because of the percentage of the genome assayed (only the exons
vs. complete chromosomes)?

In chapter 3, due to the characteristics of the data involved, the feature selection
process could probably be fine-tuned for miRNAs, as they show high informational
redundancy, since there is a significant number of miRNAs which are either highly
correlated and/or which share the same target.

One could envision a method where features can be labelled (eg. mir-34a and
mir-34b are part of the same family, mir-141 and mir-200a are part of the same
cluster, mir-125b and mir-145 target genes which are part of the same pathway,
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etc.); these labels would then be used to "guide" the internal variable selection steps
happening in the random forests algorithm.
This extension of the feature selection process, to include biologically relevant
information, if proven efficient, could be applied to other datasets making use of
feature selection for machine learning.

Another, even more obvious, additional development would be to test other classifi-
cation algorithms.
Even though random forests are theoretically well suited for our dataset, and even if
previous comparison studies have been published saying that random forests give
the best performance for a miRNA dataset with the same size as ours [135], testing
other methods could yield useful results.

Another improvement which comes quickly to mind to improve chapter 3 would be
to add another kind of variable to the dataset. For example, we could look at cell-free
DNA (cfDNA) to search for the presence or absence of punctual mutations or CNVs,
which are known to be present in tumoral DNA; or we could measure different
circulating metabolites by using mass spectrometry. This could add potentially
complementary information while staying in a non-invasive blood/plasma based
setting.

Finally, the same study design could be applied to other phenotypes. Another study
is currently underway, trying to ascertain the possibility of predicting the response
to neoadjuvant chemotherapy in breast cancer patients, based on the levels of their
circulating miRNAs before treatment and at different time points.

We are also investigating the performance of our diagnostic model on a cohort of
Rwandan breast cancer patients, and looking for potential ancestry-based differences
in the levels of circulating miRNAs.

The continuity of chapter 4 will soon be underway to validate the effect that several
of the antisenses of our lists have on their protein-coding counterpart:

• With a cell line already showing an expression of the antisense transcript,
we can artificially block this expression through the use of antisense oligonu-
cleotides, thereby preventing its hybridization with the sense transcript. Then
we would look at the expression of the coding transcript (with RT-qPCR or a
Western blot).

• With a cell line which does not express the antisense transcript, we can transfect
the cells with a plasmid allowing the expression of the antisense, and then
look for changes of expression of the coding transcript.
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Moreover, the diversity of possible direct extensions to chapter 4 is large, as the
information provided by RNA-Seq allows to look for far more than just gene expres-
sion.

Although our sample size is too small to perform an eQTL analysis, we do have
access to the sequence of transcribed RNA from the tumor and from adjacent tissue,
including single mutations. We could thus investigate these single mutations and
look for the affected genes.

Recent developments in RNA-Seq bioinformatics also allow for the detection of gene
fusion events. Gene fusions have been known for a long time to be key events in
hematological malignancies, as they occur in 90% of all lymphomas and half of
all leukemias but few fusion events have been associated to breast cancer to date
[169–171]. We could thus investigate gene fusions in our RNA-Seq dataset.

Another domain of interest which can be explored through RNA-Seq is alternative
splicing, where a single gene can yield different proteins based on the inclusion of
the different exons, and which plays a role in breast cancer [172, 173].

Finally, alternative transcription start sites could also be explored.

Clinical Perspectives

In chapter 2, the detection of CNVs is an integral part of both the diagnosis and
the prognosis for multiple myeloma patients. The technological disruptions arising
in the field of next-generation sequencing may rapidly render existing techniques
obsolete. However, the need to obtain accurate CNV profiles remains. Along with
the constant technological evolution, there is thus a requirement for re-evaluation of
the techniques used. Exome sequencing is one of such techniques envisioned in the
clinical setting.

We showed that, with proper adjustments, it was possible to replace CGH by exome
sequencing. Such a change would be beneficial as it will allow to capture both the
CNV profile and the point mutations present in the tumoral cells of MM patients.
However, we have to keep in mind that, even with adjustments and fine-tuning of
complex methods, exome sequencing might rapidly lose the favor of researchers and
clinicians alike, because of the decreasing cost of whole genome sequencing and the
additional information and precision that it provides.
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Our contributions are thus useful, but we have to keep in mind that the benefit they
bring might be temporary.

In chapter 3, we directly challenged the status quo of mammography, by developing
a non-invasive diagnostic test for breast cancer. The improvement that our test
could bring varies with the age of the patients, as the performance of mammography
increases with the age of the patients, while our test remains independent regarding
this parameter. We have seen that several steps such as the normalization, or the
reproducibility are critical when dealing with this kind of data, especially in a clinical
setting.

Given this, our test could be especially useful for young patients, at risk for severe
forms of breast cancer, as the performance of mammography is poor in young women.
Even if the performances of our tests, in terms of sensibility and specificity, are not
perfect, using it instead of mammography for young patients, or in conjunction
with mammography for older patients would surely reduce the need for useless
biopsies.

Additional work still has to be done to improve the performance of non-invasive
tests (eg. by adding other variables to the dataset, as mentioned earlier), and to be
able to challenge widely used screening methods such as mammography.

In chapter 4, through the exploration of the transcriptome world, our work has led
to new fundamental findings which, at first sight, might not seem to directly impact
the patient’s environment, but it has also led to the identification of new potential
therapeutic targets for breast cancer.

However, this work has to be refined, and these potential targets have to be further
explored and validated through the use of alternative techniques, as mentioned
earlier. These future developments might allow to improve the treatment of breast
cancer patients.

Concluding remarks

In conclusion, the present work highlights how different bioinformatics techniques
and methods have been developed and applied to three different problematics arising
at the junction of oncology and the omics world. Despite their dissimilarities, these
studies share some fundamentals, not only in their medical end goal, but also in the
technical means to achieve it.
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